1、根据使用目的分类:图像分类任务和目标检测任务;
2、使用工具:mxnet的im2rec.py;如果搭建mxnet环境可以在你安装的python路径下面找,找到mxnet文件夹,然后找到tools文件夹下找到im2rec.py (我自己的:“miniconda3\envs\gluon\Lib\site-packages\mxnet\tools”)。
3、创建文件夹:
首先需要在任意目录底下创建如下文件目录,im2rec为mxnet自带的源码,mxrec是空文件夹,用于存放打包之后的文件,images文件夹底下又有2个文件夹,dog与cat分别存放相应的图片,如果是10类那就要建立10个文件夹。
# .
# └── data
# ├── mxrec
# ├── im2rec.py
# └── images
# ├── dog
# └── cat
4、使用im2rec.py进行打包。
首先进入到上一步创建的文件夹,然后在文件夹地址栏输入cmd,进入命令窗口界面,然后输入(如果出现报错提示,缺少什么组件就安装什么组件。)
conda activate gluon
python im2rec.py --list --recursive --train-ratio 0.8 mxrec/animal images
--list 说明要产生lst文件
–recursive 遍历