判断有向图是否存在环——拓扑排序

4 篇文章 0 订阅

方法是重复寻找一个入度为0的顶点,将该顶点从图中删除(即放进一个队列里存着,这个队列的顺序就是最后的拓扑排序,具体见程序),并将该结点及其所有的出边从图中删除(即该结点指向的结点的入度减1),最终若图中全为入度为1的点,则这些点至少组成一个回路。
采用邻接矩阵存储时,遍历二维数组,求各顶点入度的时间复杂度是O(n^2)。 遍历所有结点,找出入度为0的结点的时间复杂度是O(n)。对于n个入度为0的结点,删除他们的出边的复杂度为O(n^2)。 所以总的复杂度为O(n^2)。
对于邻接表,遍历所有边,求各顶点入度的时间复杂度是O(e),即边的个数。遍历所有结点,找出入度为0的结点的时间复杂度是O(n),即顶点的个数。遍历所有边,删除入度为0的结点的出边的复杂度为O(e),即边的个数。所以总的时间复杂度是O(n+e)。

import java.util.Arrays;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;

public class test1 {
	//邻接矩阵
	static int[][] graph = new int[200][200];
	//结点个数和边的个数
	static int vNum,eNum;
	//记录每个结点的入度,初始化为0
	static int[] count = new int[200];
	//用队列保存拓扑序列
	static Queue<Integer> queue = new LinkedList<>();
	
	//拓扑排序
	void topoSort(){
		//入度为0的结点的个数,也就是入队个数
		int number = 0;
		//暂时存放拓扑序列
		Queue<Integer> temp = new LinkedList<Integer>();
		//遍历图中所有结点,找入度为0的结点删除(放进队列)
		for(int i=1;i<=vNum;i++){
			if(count[i] == 0){
				queue.offer(i);
			}
		}
		//删除这些被删除结点的出边(即对应结点入度减一)
		while(!queue.isEmpty()){
			int i = queue.peek();
			temp.offer(queue.poll());
			number++;
			for(int j=1;j<=vNum;j++){
				if(graph[i][j] == 1){
					count[j] -= 1;
					//出现了新的入度为0的结点,删除
					if(count[j] == 0){
						queue.offer(j);
					}
				}
			}
		}
		if(number != vNum){
			System.out.println("最后存在入度为1的结点,这个有向图是有回路的。");
		}else{
			System.out.println("这个有向图不存在回路,拓扑序列为:" + temp.toString());
		}
	}
	
	//创建图,以邻接矩阵表示
	void create(){
		Scanner sc = new Scanner(System.in);
		System.out.println("正在创建图,请输入顶点个数vNum:");
		vNum = sc.nextInt();
		System.out.println("请输入边个数eNum:");
		eNum = sc.nextInt();
		//初始化邻接矩阵为0(如果3个顶点,顶点分别是1,2,3)
		for(int i=1;i<=vNum;i++){
			for(int j=1;j<=vNum;j++){
				graph[i][j] = 0;
			}
		}
		//输入边的情况
		System.out.println("请输入边的头和尾:");
		for(int k=1;k<=eNum;k++){
			int i = sc.nextInt();
			int j = sc.nextInt();
			graph[i][j] = 1;
		}
		//计算每个结点的入度
		Arrays.fill(count, 0);//先初始化为0
		for(int i=1;i<=vNum;i++){
			for(int j=1;j<=vNum;j++){
				if(graph[i][j] == 1){
					count[j] = count[j] + 1;
				}
			}
		}
	}
	
	public static void main(String[] args) {
		test1 t = new test1();
		t.create();
		t.topoSort();
	}
}


课程表

你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。

在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程 bi 。

例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。

示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例 2:

输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。

提示:

1 <= numCourses <= 105
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
prerequisites[i] 中的所有课程对 互不相同

class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        if (numCourses <= 0) {
            return false;
        }

        int length = prerequisites.length;//行
        if (length == 0) {
            return true;
        }
        //先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
        int[] inDegree = new int[numCourses];//入度为0
        Map<Integer, List<Integer>> map = new HashMap<>();
        for (int i = 0; i < numCourses; i++) {
            map.put(i, new ArrayList<>());
        }

        for (int[] p : prerequisites) {
            inDegree[p[0]]++;
            List<Integer> list = map.get(p[1]);
            list.add(p[0]);
        }

        Queue<Integer> queue = new LinkedList<>();

        // 首先加入入度为 0 的结点
        for (int i = 0; i < numCourses; i++) {
            if (inDegree[i] == 0) {
                queue.add(i);
            }
        }

        // 记录已经出队的课程数量
        int count = 0;
        while (!queue.isEmpty()) {
            Integer top = queue.poll();
            count += 1;
            // 遍历当前出队结点的所有后继结点
            List<Integer> arrayList = map.get(top);
            for (int successor : arrayList) {
                inDegree[successor]--;
                if (inDegree[successor] == 0) {
                    queue.add(successor);
                }
            }
        }
        return count == numCourses;
    }
}

课程表 II

现在你总共有 numCourses 门课需要选,记为 0 到 numCourses - 1。给你一个数组 prerequisites ,其中 prerequisites[i] = [ai, bi] ,表示在选修课程 ai 前 必须 先选修 bi 。

例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示:[0,1] 。
返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组 。

示例 1:

输入:numCourses = 2, prerequisites = [[1,0]]
输出:[0,1]
解释:总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。
示例 2:

输入:numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
输出:[0,2,1,3]
解释:总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。
示例 3:

输入:numCourses = 1, prerequisites = []
输出:[0]

提示:
1 <= numCourses <= 2000
0 <= prerequisites.length <= numCourses * (numCourses - 1)
prerequisites[i].length == 2
0 <= ai, bi < numCourses
ai != bi
所有[ai, bi] 互不相同

class Solution {
    public int[] findOrder(int numCourses, int[][] prerequisites) {
        int length = prerequisites.length;//行
        //先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
        int[] inDegree = new int[numCourses];//入度
        Map<Integer, List<Integer>> map = new HashMap<>();
        for (int i = 0; i < numCourses; i++) {
            map.put(i, new ArrayList<>());
        }

        for (int[] p : prerequisites) {
            inDegree[p[0]]++;
            List<Integer> list = map.get(p[1]);
            list.add(p[0]);
        }
        int[] nums = new int[numCourses];
        int k = 0;
        Queue<Integer> queue = new LinkedList<>();

        // 首先加入入度为 0 的结点
        for (int i = 0; i < numCourses; i++) {
            if (inDegree[i] == 0) {
                queue.add(i);
                nums[k++] = i;
            }
        }

        // 记录已经出队的课程数量
        int count = 0;
        while (!queue.isEmpty()) {
            Integer top = queue.poll();
            count += 1;
            // 遍历当前出队结点的所有后继结点
            List<Integer> arrayList = map.get(top);
            for (int successor : arrayList) {
                inDegree[successor]--;
                if (inDegree[successor] == 0) {
                    queue.add(successor);
                    nums[k++] = successor;
                }
            }
        }
        return count == numCourses ? nums :new int[0];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值