方法是重复寻找一个入度为0的顶点,将该顶点从图中删除(即放进一个队列里存着,这个队列的顺序就是最后的拓扑排序,具体见程序),并将该结点及其所有的出边从图中删除(即该结点指向的结点的入度减1),最终若图中全为入度为1的点,则这些点至少组成一个回路。
采用邻接矩阵存储时,遍历二维数组,求各顶点入度的时间复杂度是O(n^2)。 遍历所有结点,找出入度为0的结点的时间复杂度是O(n)。对于n个入度为0的结点,删除他们的出边的复杂度为O(n^2)。 所以总的复杂度为O(n^2)。
对于邻接表,遍历所有边,求各顶点入度的时间复杂度是O(e),即边的个数。遍历所有结点,找出入度为0的结点的时间复杂度是O(n),即顶点的个数。遍历所有边,删除入度为0的结点的出边的复杂度为O(e),即边的个数。所以总的时间复杂度是O(n+e)。
import java.util.Arrays;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class test1 {
//邻接矩阵
static int[][] graph = new int[200][200];
//结点个数和边的个数
static int vNum,eNum;
//记录每个结点的入度,初始化为0
static int[] count = new int[200];
//用队列保存拓扑序列
static Queue<Integer> queue = new LinkedList<>();
//拓扑排序
void topoSort(){
//入度为0的结点的个数,也就是入队个数
int number = 0;
//暂时存放拓扑序列
Queue<Integer> temp = new LinkedList<Integer>();
//遍历图中所有结点,找入度为0的结点删除(放进队列)
for(int i=1;i<=vNum;i++){
if(count[i] == 0){
queue.offer(i);
}
}
//删除这些被删除结点的出边(即对应结点入度减一)
while(!queue.isEmpty()){
int i = queue.peek();
temp.offer(queue.poll());
number++;
for(int j=1;j<=vNum;j++){
if(graph[i][j] == 1){
count[j] -= 1;
//出现了新的入度为0的结点,删除
if(count[j] == 0){
queue.offer(j);
}
}
}
}
if(number != vNum){
System.out.println("最后存在入度为1的结点,这个有向图是有回路的。");
}else{
System.out.println("这个有向图不存在回路,拓扑序列为:" + temp.toString());
}
}
//创建图,以邻接矩阵表示
void create(){
Scanner sc = new Scanner(System.in);
System.out.println("正在创建图,请输入顶点个数vNum:");
vNum = sc.nextInt();
System.out.println("请输入边个数eNum:");
eNum = sc.nextInt();
//初始化邻接矩阵为0(如果3个顶点,顶点分别是1,2,3)
for(int i=1;i<=vNum;i++){
for(int j=1;j<=vNum;j++){
graph[i][j] = 0;
}
}
//输入边的情况
System.out.println("请输入边的头和尾:");
for(int k=1;k<=eNum;k++){
int i = sc.nextInt();
int j = sc.nextInt();
graph[i][j] = 1;
}
//计算每个结点的入度
Arrays.fill(count, 0);//先初始化为0
for(int i=1;i<=vNum;i++){
for(int j=1;j<=vNum;j++){
if(graph[i][j] == 1){
count[j] = count[j] + 1;
}
}
}
}
public static void main(String[] args) {
test1 t = new test1();
t.create();
t.topoSort();
}
}
课程表
你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。
在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程 bi 。
例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例 2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。
提示:
1 <= numCourses <= 105
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
prerequisites[i] 中的所有课程对 互不相同
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
if (numCourses <= 0) {
return false;
}
int length = prerequisites.length;//行
if (length == 0) {
return true;
}
//先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
int[] inDegree = new int[numCourses];//入度为0
Map<Integer, List<Integer>> map = new HashMap<>();
for (int i = 0; i < numCourses; i++) {
map.put(i, new ArrayList<>());
}
for (int[] p : prerequisites) {
inDegree[p[0]]++;
List<Integer> list = map.get(p[1]);
list.add(p[0]);
}
Queue<Integer> queue = new LinkedList<>();
// 首先加入入度为 0 的结点
for (int i = 0; i < numCourses; i++) {
if (inDegree[i] == 0) {
queue.add(i);
}
}
// 记录已经出队的课程数量
int count = 0;
while (!queue.isEmpty()) {
Integer top = queue.poll();
count += 1;
// 遍历当前出队结点的所有后继结点
List<Integer> arrayList = map.get(top);
for (int successor : arrayList) {
inDegree[successor]--;
if (inDegree[successor] == 0) {
queue.add(successor);
}
}
}
return count == numCourses;
}
}
课程表 II
现在你总共有 numCourses 门课需要选,记为 0 到 numCourses - 1。给你一个数组 prerequisites ,其中 prerequisites[i] = [ai, bi] ,表示在选修课程 ai 前 必须 先选修 bi 。
例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示:[0,1] 。
返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组 。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:[0,1]
解释:总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。
示例 2:
输入:numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
输出:[0,2,1,3]
解释:总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。
示例 3:
输入:numCourses = 1, prerequisites = []
输出:[0]
提示:
1 <= numCourses <= 2000
0 <= prerequisites.length <= numCourses * (numCourses - 1)
prerequisites[i].length == 2
0 <= ai, bi < numCourses
ai != bi
所有[ai, bi] 互不相同
class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
int length = prerequisites.length;//行
//先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
int[] inDegree = new int[numCourses];//入度
Map<Integer, List<Integer>> map = new HashMap<>();
for (int i = 0; i < numCourses; i++) {
map.put(i, new ArrayList<>());
}
for (int[] p : prerequisites) {
inDegree[p[0]]++;
List<Integer> list = map.get(p[1]);
list.add(p[0]);
}
int[] nums = new int[numCourses];
int k = 0;
Queue<Integer> queue = new LinkedList<>();
// 首先加入入度为 0 的结点
for (int i = 0; i < numCourses; i++) {
if (inDegree[i] == 0) {
queue.add(i);
nums[k++] = i;
}
}
// 记录已经出队的课程数量
int count = 0;
while (!queue.isEmpty()) {
Integer top = queue.poll();
count += 1;
// 遍历当前出队结点的所有后继结点
List<Integer> arrayList = map.get(top);
for (int successor : arrayList) {
inDegree[successor]--;
if (inDegree[successor] == 0) {
queue.add(successor);
nums[k++] = successor;
}
}
}
return count == numCourses ? nums :new int[0];
}
}