torch.index_fill的理解

通过按index中给定的顺序 选择索引,用val值填充 自己(自张量)的元素。
dim(int)–索引所依据的维度
index(LongTensor)–要填充的自张量的索引
val(浮点数)–要填充的值

import torch

a = torch.randn(4, 3)
print(a)
# tensor([[-1.7189,  0.9798, -0.0428],
#         [ 0.7184, -0.2824, -1.0289],
#         [ 1.2858,  0.8423, -1.0473],
#         [-0.0269, -0.9876, -2.3126]])

index = torch.tensor([0, 2])
b=a.index_fill(1, index, 9)#要填充1维
print(b)
# tensor([[ 9.0000,  0.9798,  9.0000],
#         [ 9.0000, -0.2824,  9.0000],
#         [ 9.0000,  0.8423,  9.0000],
#         [ 9.0000, -0.9876,  9.0000]])

c=a.index_fill(0, index, 9)#要填充0维
print(c)
# tensor([[ 9.0000,  9.0000,  9.0000],
#         [ 0.7184, -0.2824, -1.0289],
#         [ 9.0000,  9.0000,  9.0000],
#         [-0.0269, -0.9876, -2.3126]])

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值