2732:[HNOI2012]射箭
Description
沫沫最近在玩一个二维的射箭游戏,如下图 1 所示,这个游戏中的 x 轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴。沫沫控制一个位于(0,0)的弓箭手,可以朝 0 至 90?中的任意角度(不包括 0度和 90度),以任意大小的力量射出带有穿透能力的光之箭。由于游戏中没有空气阻力,并且光之箭没有箭身,箭的轨迹会是一条标准的抛物线,被轨迹穿过的所有靶子都认为被沫沫射中了,包括那些 只有端点被射中的靶子。这个游戏有多种模式,其中沫沫最喜欢的是闯关模式。在闯关模式中,第一关只有一个靶 子,射中这个靶子即可进入第二关,这时在第一关的基础上会出现另外一个靶子,若能够一箭 双雕射中这两个靶子便可进入第三关,这时会出现第三个靶子。依此类推,每过一关都会新出 现一个靶子,在第 K 关必须一箭射中前 K 关出现的所有 K 个靶子才能进入第 K+1 关,否则游戏 结束。沫沫花了很多时间在这个游戏上,却最多只能玩到第七关“七星连珠”,这让她非常困惑。 于是她设法获得了每一关出现的靶子的位置,想让你告诉她,最多能通过多少关
Input
输入文件第一行是一个正整数N,表示一共有N关。接下来有N行,第i+1行是用空格隔开的三个正整数xi,yi1,yi2 ,表示第i关出现的靶子的横坐标是xi,纵坐标的范围是从yi1到yi2 。
输入保证30%的数据满足N≤100,50%的数据满足N≤5000,100%的数据满足N≤100000且给 出的所有坐标不超过109 。
Output
仅包含一个整数,表示最多的通关数。
Sample Input
5
2 8 12
5 4 5
3 8 10
6 2 3
1 3 7
Sample Output
3
根据题意,对于每个线段我可以列出这样两个方程:
-x*a+y1/x<=b
-x*a+y2/x>=b
然后二分答案以后半平面交判断就行了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define inf 1e100
#define eps 1e-15
#define mid (l+r)/2
const int N=200010;
struct S{double x,y0,y1;}a[N];
struct Point{double x,y;}p[N];
struct Line{
Point p,v;
double ang;
inline void prepare(double k,double b,double kind){
p=(Point){0.,b};
double dis=sqrt(1.+k*k);
v.x=kind/dis;v.y=kind/dis*k;
ang=atan2(v.y,v.x);
}
bool operator < (const Line &x)const{return ang<x.ang;}
}l[N],q[N];
Point operator + (Point x,Point y){return (Point){x.x+y.x,x.y+y.y};}
Point operator - (Point x,Point y){return (Point){x.x-y.x,x.y-y.y};}
Point operator * (Point x,double y){return (Point){x.x*y,x.y*y};}
inline double Cross(Point x,Point y){return x.x*y.y-x.y*y.x;}
inline bool onleft(Line x,Point y){return Cross(x.v,y-x.p)>0.;}
inline Point get_point(Line x,Line y){
Point u=x.p-y.p;
double t=Cross(y.v,u)/Cross(x.v,y.v);
return x.p+x.v*t;
}
inline bool check(int x){
int h,t,tot=0,i;
l[++tot].p=(Point){0.,0.},l[tot].v=(Point){1.,0.},l[tot].ang=atan2(0.,1.);
l[++tot].p=(Point){0.,0.},l[tot].v=(Point){0.,1.},l[tot].ang=atan2(1.,0.);
l[++tot].p=(Point){0.,inf},l[tot].v=(Point){-1.,0.},l[tot].ang=atan2(0.,-1.);
l[++tot].p=(Point){-inf,0.},l[tot].v=(Point){0.,-1.},l[tot].ang=atan2(-1.,0.);
for(i=1;i<=x;++i){
l[++tot].prepare(-a[i].x,a[i].y0*1.0/a[i].x,1.);
l[++tot].prepare(-a[i].x,a[i].y1*1.0/a[i].x,-1.);
}
sort(l+1,l+tot+1);
q[h=t=1]=l[1];
for(i=2;i<=tot;++i){
while(h<t&&!onleft(l[i],p[t-1])) --t;
while(h<t&&!onleft(l[i],p[h])) ++h;
q[++t]=l[i];
if(fabs(Cross(q[t].v,q[t-1].v))<eps){
--t;
if(onleft(q[t],l[i].p)) q[t]=l[i];
}
if(h<t) p[t-1]=get_point(q[t-1],q[t]);
}
while(h<t&&!onleft(q[h],p[t-1])) --t;
return t-h>1;
}
int main(){
int i,j,n;
scanf("%d",&n);
for(i=1;i<=n;++i){
scanf("%lf%lf%lf",&a[i].x,&a[i].y0,&a[i].y1);
a[i].y0-=eps;a[i].y1+=eps;
}
int l=0,r=n,ans=0;
while(l<r){
if(check(mid)) ans=max(ans,mid),l=mid+1;
else r=mid;
}
printf("%d\n",ans);
}