数据挖掘第7周

聚类(无监督分类)

聚类算法

  • K-Means:利用欧氏距离来判别数据之间的相似度,不断迭代,直至所有点离聚类中心的距离之和最近。优点:简单直观、高效;缺点:K值需要人为设定、初始点位置关键、对噪声敏感、不适合多分类问题。
  • 混合高斯模型:EM算法有点:必然收 敛;缺点:依赖初始值。

评价算法

  • 均方误差(优点:简单直观;缺点:聚类集数量之间差别很大或不是线性分类时,并不准确)
  • Sihouette(轮廓系数):类间距离与类内距离的相对大小,如果类间距离 > 类内距离,则说明聚类结果好,反之则不好。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值