LAR(最小角回归)算法原理和示意图

LAR算法是一种逐步选择特征向量的回归方法,目标是找到与所有回归变量相关性相同的最小残差。算法通过选择与残差相关度最高的特征向量并调整其回归系数,确保残差与所有回归变量的夹角相等。几何上,这个过程相当于寻找与残差夹角最小的特征向量,使残差位于回归变量和角平分线上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LAR(最小角回归)算法原理和示意图

LAR算法原理描述

LAR(Least Angle Regression)算法

对于一个参数线性化(linear-in-the-parameters)模型,其回归目标向量为若干组回归变量乘以系数的线性组合,通过逐步选择特征向量,每次选择一个特征向量来作为模型的回归变量,最终使得与所有回归变量的相关性均相同且最大的残差向量最小。

此算法的关键在于回归变量的选择顺序和其系数的计算规则。

具体步骤:
(解析角度)
1)选择与初始残差(即为系统响应)相关度最大的特征向量作为回归向量,并为其选择合适的回归系数,计算当前辨识模型残差,使残差与此回归向量以及另一个与残差相关度最大的特征向量的相关度相等;
2)选择上一步中与残差相关度最大的特征向量作为第二个回归系数,并为其选择合适的回归系数,计算当前辨识模型残差,使此残差与所有回归变量以及另一个与残差相关度最大的特征向量的相关度都相等。
3)重复步骤2)继续选择下一个回归变量及其参数,直到无多余特征向量或选择的模型符合所需的残差要求。

反映到几何图像上:(几何角度)
1)选择与初始残差向量(即系统的响应向量)夹角最小的特征向量作为回归变量,然后在此向量的方向上选择合适的步长作为其回归系数,使得此时残差与回归变量以及另一个与残差夹角最小的特征向量的夹角相等,也就是说使残差位于回归变量和此与残差夹角最小的特征向量的角平分线上;
2)选择上一步中与残差夹角最小的特征向量作为第二个回归系数,并沿着上一步中的残差方向选择合适步长作为其回归参数,使得此时残差与所有回归变量以及另一个与残差夹角最小的特征向量的夹角相等,也就是说使残差位于这些回归变量和此与残差夹角最小的特征向量的角平分线上;
3)重复步骤2),继续选择下一个回归变量及其参数,直到无多余特征向量或选择的模型符合所需的残差要求。

LAR算法原理示例图

示例图如下:

以模型有三个特征向量为例:
图中三个特征向量 Φ 1 \Phi_1 Φ1 Φ 2 \Phi_2 Φ2 Φ 3 \Phi_3 Φ3(特征向量可能是由以系统输入输出和固定的非线性参数为自变量的非线性函数构成的复杂向量)和一个系统输出向量 y y y均由实线画出。在第一步中,由于相较 Φ 2 \Phi_2 Φ2 Φ 3 \Phi_3 Φ3 Φ 1 \Phi_1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值