神经网络|张量tensor(待完善)

本文介绍了张量的基本概念,作为存储多维度数据的数学工具,以及在图神经网络中如何通过PyTorch的`torch.Tensor`实现数据结构。作者通过实例展示了如何构造图数据结构,包括节点属性、标签和边集的定义。
摘要由CSDN通过智能技术生成

tensor/张量

什么是tensor?

在这里插入图片描述

在这里插入图片描述
张量是用来探究一个点在各个切面(一共三个切面)和各个方向(x,y,z三个方向)上的受力情况。
所以一共有九种情况,可以用一个3x3的矩阵进行存储。

在这里插入图片描述

探究长方体内某一个节点的受力情况
在这里插入图片描述
在这里插入图片描述

如何用代码实现tensor

tensor的应用

tensor在图神经网络中的应用

在这里插入图片描述
用来构造图的Data要求使用tensor的结构进行传入,需要用tensor去构造点的属性,点的标签和边集等等。

import torch
from torch_geometric.data import Data
x = torch.tensor(([1,0],[0,1],[-1,0],[0,-1]),dtype=torch.float)
y = torch.tensor([0,1,0,1],dtype=torch.float)
edge_index = torch.tensor([[0,0,1,3,2],
                           [2,1,0,2,1]],dtype=torch.long)#前一个列表,代表起始点
#后一个列表代表终止点
data = Data(x=x,y=y,edge_index=edge_index)
print(data)

在这里插入图片描述

其他

tensor

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值