题目描述
题目思路
第一次建立状态的思路是二维数组,
代表所用I型积木个数,
代表所用L型积木个数。
的值代表此时填充画布的总方案数。由于题目中特意强调了每块积木单位面积,计算得到最大积木数为
块,但是这样数组过大,会导致运行超时。
直接硬着头皮建立一维数组,代表长度为
时积木的拼接方案数。假设从左往右放置积木,关注最右边的积木,容易发现最右侧的积木最多只会存在4种类型:I型积木竖着放;两个I型积木横着放(简称O型);L型积木镜像对称放(简称┛);L型积木镜像对称再上下对称放(简称┓)。
长度N | I型 | O型 | ┛型 | ┓型 | 总方案数 |
1 | 1 | 0 | 0 | 0 | 1 |
2 | 1 | 1 | 0 | 0 | 2 |
3 | 2 | 1 | 1 | 1 | 5 |
4 | 5 | 2 | 2 | 2(1+1) | 11 |
5 | 11 | 5 | 4 | 4(2+1+1) | 24 |
6 | 24 | 11 | 9 | 9(5+2+1+1) | 53 |
本质上只是一个找规律的游戏。
由此可以设计初始状态,
代表末尾为I型积木的方案数;
代表末尾为O型积木的方案数;
代表末尾为┛型积木的方案数;
代表末尾为┓型积木的方案数;
代表画布长度为
的总方案数;
建立状态转移方程:
我的代码
由于1e9+7很接近int的最大值。为了避免int溢出,改用longlong类型储存数据。
#include <iostream>
#include <algorithm>
using namespace std;
const int max_n = 1e7+2;
typedef long long ll;
ll dp[max_n][5];
int main() {
int n;
cin >> n;
//建立初始状态
dp[1][0] = 1;
dp[1][1] = 0;
dp[1][2] = 0;
dp[1][3] = 0;
dp[1][4] = 1;
dp[2][0] = 1;
dp[2][1] = 1;
dp[2][2] = 0;
dp[2][3] = 0;
dp[2][4] = 2;
dp[3][0] = 2;
dp[3][1] = 1;
dp[3][2] = 1;
dp[3][3] = 1;
dp[3][4] = 5;
ll sum = 1;
//动态规划
for (int i = 4; i <= n; i++)
{
dp[i][0] = dp[i - 1][4] % 1000000007;
dp[i][1] = dp[i - 2][4] % 1000000007;
dp[i][2] = (sum + 1) % 1000000007;
dp[i][3] = (sum + 1) % 1000000007;
dp[i][4] = (dp[i][0] + dp[i][1] + dp[i][2] + dp[i][3]) % 1000000007;
sum = (sum + dp[i - 2][4]) % 1000000007;
}
//获取答案
ll ans = dp[n][4];
cout << ans;
return 0;
}
这个程序只通过了部分测试点,原因是运行内存超过限制了!
只能靠覆盖掉之前的数据来缩小数组尺寸了。
#include <iostream>
#include <algorithm>
using namespace std;
const int max_n = 1e7+2;
typedef long long ll;
ll dp[5][5];
int main() {
int n;
cin >> n;
//建立初始状态
dp[1][0] = 1;
dp[1][1] = 0;
dp[1][2] = 0;
dp[1][3] = 0;
dp[1][4] = 1;
dp[2][0] = 1;
dp[2][1] = 1;
dp[2][2] = 0;
dp[2][3] = 0;
dp[2][4] = 2;
dp[3][0] = 2;
dp[3][1] = 1;
dp[3][2] = 1;
dp[3][3] = 1;
dp[3][4] = 5;
ll sum = 1;
if (n <= 3) {
cout << dp[n][4];
}
//动态规划
for (int i = 4; i <= n; i++)
{
dp[4][0] = dp[3][4] % 1000000007;
dp[4][1] = dp[2][4] % 1000000007;
dp[4][2] = (sum + 1) % 1000000007;
dp[4][3] = (sum + 1) % 1000000007;
dp[4][4] = (dp[4][0] + dp[4][1] + dp[4][2] + dp[4][3]) % 1000000007;
sum = (sum + dp[2][4]) % 1000000007;
//更新数据
dp[2][0] = dp[3][0];
dp[2][1] = dp[3][1];
dp[2][2] = dp[3][2];
dp[2][3] = dp[3][3];
dp[2][4] = dp[3][4];
dp[3][0] = dp[4][0];
dp[3][1] = dp[4][1];
dp[3][2] = dp[4][2];
dp[3][3] = dp[4][3];
dp[3][4] = dp[4][4];
}
//获取答案
ll ans = dp[4][4];
if (n > 3) {
cout << ans;
}
return 0;
}
这道题除了动态规划外,学习到的更多是数据溢出的维护和运行内存的维护。