零基础入门数据挖掘 - EDA数据探索性分析


在这里插入图片描述
该部分是在 赛题理解的基础上,进一步的对已有的数据通过作图、制表、方程拟合、计算特征量等手段探索数据,了解数据,了解变量间的相互关系以及变量与预测值之间的存在关系,为便为后续特征处理模型应用做准备工作。

1、载入各种数据科学以及可视化库

#coding:utf-8
import warnings #导入warnings包,利用过滤器来实现忽略警告语句。
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno

2、载入数据,简略观察,数据总览

首先读取数据,并简要观察数据集首尾部分数据,了解数据形式,进一步通过describe()函数来熟悉数据的相关描述性统计量,info()来熟悉数据类型,了解是否存在除了缺失值以外的特殊异常符号。

## 1) 载入训练集和测试集;
path = 'C:/Users/Kingfish/Desktop/TianChi/'
Train_data = pd.read_csv(path+'train.csv', sep=' ')   
Test_data = pd.read_csv(path+'testA.csv', sep=' ') 
## 2) 简略观察训练街和测试集数据(head()+shape)
Train_data.head().append(Train_data.tail())
Test_data.head().append(Test_data.tail())
Train_data.shape
Test_data.shape
## 3) 通过describe()来熟悉数据的相关统计量
Train_data.describe()
Test_data.describe()
## 4) 通过info()来熟悉数据类型
Train_data.info()
Test_data.info()

3、判断数据缺失和异常

缺失值是什么?指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是在数据收集、存储、整理等过程中某个或某些属性的值是不完全的。为什么需要处理缺失值呢?训练数据集中缺少的数据可能会减少模型的拟合,或者可能导致模型偏差,因为没有正确地分析变量的行为和关系,可能导致错误的预测或分类。如何进行缺失值处理?一般根据情况考虑删除、填充,也可以不处理,(直接在包含空值的数据上进行数据挖掘,这类方法包括贝叶斯网络和人工神经网络等。),如果使用lgb等树模型可以直接空缺,让树自己去优化。

## 1) 查看每列的存在缺失值情况
Train_data.isnull().sum()
Test_data.isnull().sum()
# 训练集nan可视化
missing = Train_data.isnull().sum()#统计各变量的缺失值情况
missing = missing[missing > 0]
missing.sort_values(inplace=True)
missing.plot.bar()
# 可视化缺省值
msno.matrix(Train_data.sample(250))
msno.bar(Train_data.sample(1000))
msno.matrix(Test_data.sample(250))
msno.bar(Test_data.sample(1000))
## 2) 异常值检测
Train_data['notRepairedDamage'].value_counts()
Train_data['notRepairedDamage'].replace('-', np.nan, inplace=True)
Train_data['notRepairedDamage'].value_counts()

Test_data['notRepairedDamage'].value_counts()
Test_data['notRepairedDamage'].replace('-', np.nan, inplace=True)
Train_data["seller"].value_counts()
Train_data["offerType"].value_counts()

del Train_data["seller"]
del Train_data["offerType"]
del Test_data["seller"]
del Test_data["offerType"]

通过上述分析可以查看到数据集中存在的缺失值个数情况。并且发现‘ - ’也为空缺值。发现seller和offerType这两个类别特征严重倾斜,考虑先删除。

4、了解预测值的分布

Train_data['price']
Train_data['price'].value_counts()
## 1) 总体分布概况(无界约翰逊分布等)
import scipy.stats as st
y = Train_data['price']
plt.figure(1); plt.title('Johnson SU')
sns.distplot(y, kde=False, fit=st.johnsonsu)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)

在这里插入图片描述在这里插入图片描述
根据可视化可以看到因变量‘价格’不服从正态分布,所以在进行回归之前需要进行转换,对数变换做得很好,不过最佳拟合是无界约翰逊分布。约翰逊分布,是经约翰变换后服从正态分布的随机变量的概率分布。进一步查看价格的偏度、峰度等数值情况以及具体频数,进一步了解该特征。 也可以对于该特征的异常值进行观察、处理。

## 2) 查看skewness and kurtosis
sns.distplot(Train_data['price']);
print("Skewness: %f" % Train_data['price'].skew())
print("Kurtosis: %f" % Train_data['price'].kurt())
Train_data.skew(), Train_data.kurt()
sns.distplot(Train_data.skew(),color='blue',axlabel ='Skewness')
sns.distplot(Train_data.kurt(),color='orange',axlabel ='Kurtness')
## 3) 查看预测值的具体频数
plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()
# log变换之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick
plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()

5、特征分析

先分离出数据集的label,人为根据实际含义来区分数值型特征还是分类型特征,分别用nunique()查看数据集中类别特征不同值个数。

Y_train = Train_data['price']
numeric_features = ['power', 'kilometer', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v
categorical_features = ['name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox', 'notRepairedDam
# 训练集特征nunique分布
for cat_fea in categorical_features:
print(cat_fea + "的特征分布如下:")
print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
print(Train_data[cat_fea].value_counts())
# 验证集特征nunique分布
for cat_fea in categorical_features:
print(cat_fea + "的特征分布如下:")
print("{}特征有个{}不同的值".format(cat_fea, Test_data[cat_fea].nunique()))
print(Test_data[cat_fea].value_counts())
(1) 数值型特征分析
相关性分析

合并数值型特征和label,查看各变量相关性系数和相关性可视化。

numeric_features.append('price')
numeric_features
## 1) 数字特征相互之间的相关系数
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
print(correlation['price'].sort_values(ascending = False),'\n')
f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True, vmax=0.8)
del price_numeric['price']
## 2) 数字特征相互之间的关系可视化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5', 'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()
## 3) 多变量互相回归关系可视化
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2,
# ['v_12', 'v_8' , 'v_0', 'power', 'v_5', 'v_2', 'v_6', 'v_1', 'v_14']
v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)
v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)
v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)
power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)
v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)
v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)
v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)
v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)
v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)
v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)

在这里插入图片描述
在这里插入图片描述

分布可视化
## 1) 查看几个特征 偏度和峰值
for col in numeric_features:
print('{:15}'.format(col),
'Skewness: {:05.2f}'.format(Train_data[col].skew()) ,
' ' ,
'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())
)
## 3) 每个数字特征得分布可视化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")
(2)类别型特征分析

类别型特征分析一般箱形图可视化,小提琴图,柱形图可视化,类别频数可视化

## 1) unique分布
for fea in categorical_features:
print(Train_data[fea].nunique())
categorical_features
## 2) 类别特征箱形图可视化
# 因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下
categorical_features = ['model',
'brand',
'bodyType',
'fuelType',
'gearbox',
'notRepairedDamage']
for c in categorical_features:
Train_data[c] = Train_data[c].astype('category')
if Train_data[c].isnull().any():
Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])
Train_data[c] = Train_data[c].fillna('MISSING')
def boxplot(x, y, **kwargs):
sns.boxplot(x=x, y=y)
x=plt.xticks(rotation=90)
f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(boxplot, "value", "price")
## 3) 类别特征的小提琴图可视化
catg_list = categorical_features
target = 'price'
for catg in catg_list :
sns.violinplot(x=catg, y=target, data=Train_data)
plt.show()
categorical_features = ['model',
'brand',
'bodyType',
'fuelType',
'gearbox',
'notRepairedDamage']
## 4) 类别特征的柱形图可视化
def bar_plot(x, y, **kwargs):
sns.barplot(x=x, y=y)
x=plt.xticks(rotation=90)
f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(bar_plot, "value", "price")
## 5) 类别特征的每个类别频数可视化(count_plot)
def count_plot(x, **kwargs):
sns.countplot(x=x)
x=plt.xticks(rotation=90)
f = pd.melt(Train_data, value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(count_plot, "value")

总结

  1. 对于数据的初步分析,可以从样本shape()函数,首尾样本观测值形态,特征所表示的含义(非匿名特征),特征的缺失情况、异常值检测等入手,并且对于缺失值根据实际需求进行删除或者填充或者不处理。
  2. 要注重对Label的分析,分析数值型标签的分布状态。
  3. 注意特征之间以及特征与lable之间的相关关系,将特征分为数值型特征和类别型特征(进一步分为有序、无序类别特征),了解特征的分布情况。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值