信息熵 条件熵 信息增益 信息增益比 GINI系数

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

在信息论与概率统计学中,熵(entropy)是一个很重要的概念。在机器学习与特征工程中,熵的概念也用得灰常多。今天就把跟熵有关的东东稍微整理一下,权当笔记。

1.信息熵

熵是神马东东?信息论的开山祖师爷Shannon(中文翻译过来一般叫香农,总觉得很多文字经过翻译就不对劲,就跟人家老外翻译贱人就是矫情一样,感觉怪怪的。所以咱们还是用英文了,偷偷装个小逼)明确告诉我们,信息的不确定性可以用熵来表示:
对于一个取有限个值的随机变量X,如果其概率分布为:
P ( X = x i ) = p i , i = 1 , 2 , ⋯   , n P(X=x_i) = p_i, i = 1,2, \cdots,n P(X=xi)=pi,i=1,2,,n
那么随机变量X的熵可以用以下公式描述:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X)=-\sum_{i=1}^n p_i \log p_i H(X)=i=1npilogpi

每次看到这个式子,都会从心底里感叹数学的伟大与奇妙。在这之前,信息这东东对于人们来说,是个看着好像挺清晰实际还是很模糊的概念。Shannon用最简洁美妙的方式,告诉了整个世界信息到底应该怎么去衡量去计算。今天每个互联网人都知道,这个衡量的标准就是bit。正是由于bit的出现,才引领了我们今天信息时代的到来。所以即使把Shannon跟世界上最伟大的那些科学家相提并论,我觉得也丝毫不为过。

举个例子,如果一个分类系统中,类别的标识是 c c c,取值情况是 c 1 , c 2 , ⋯   , c n c_1,c_2,\cdots,c_n c1,c2,,cn,n为类别的总数。那么此分类系统的熵为:
H ( c ) = − ∑ i = 1 n p ( c i ) ⋅ log ⁡ 2 p ( c i ) H(c)=-\sum_{i=1}^n p(c_i) \cdot \log_2 p(c_i) H(c)=i=1np(ci)log2p(ci)
更特别一点,如果是个二分类系统,那么此系统的熵为:
H ( c ) = p ( c 0 ) log ⁡ 2 p ( c 0 ) + p ( c 1 ) log ⁡ 2 p ( c 1 ) H(c) = p(c_0) \log _2p(c_0) + p(c_1) \log_2 p(c_1) H(c)=p(c0)log2p(c0)+p(c1)log2p(c1)
其中 p ( c 0 ) p(c_0) p(c0) p ( c 1 ) p(c_1) p(c1)分别为正负样本出现的概率。

2.条件熵(Conditional Entropy)与信息增益(Information Gain)

第一节我们谈到,信息的不确定性我们用熵来进行描述。很多时候,我们渴望不确定性,渴望明天又是新的一天,希望寻找新的刺激与冒险,所谓的七年之庠就是最好的例子。但是又有很多时候,我们也讨厌不确定性,比如现在的RTB广告,很多时候广告主其实希望不管什么情况下,这个广告位都是归我所有来投广告,别人都别跟我来抢,我把广告素材准备好以后,媒体按排期给我播就行了。所以在这种情况下,我们又要竭力去消除系统的不确定性。

那怎么样去消除系统的不确定性呢?当我们知道的信息越多的时候,自然随机事件的不确定性就越小。举个简单的例子:
如果投掷一枚均匀的筛子,那么筛子出现1-6的概率是相等的,此时,整个系统的熵可以表述为: H ( c ) = − 1 6 log ⁡ 2 1 6 × 6 = log ⁡ 2 6 H(c) = - \frac{1}{6} \log_2 \frac{1}{6} \times 6 = \log_2 6 H(c)=61log261×6=log26
如果我们加一个特征,告诉你掷筛子的结果出来是偶数,因为掷筛子出来为偶数的结果只可能为2,4,6,那么此时系统的熵为:
H ( c ) = − 1 3 log ⁡ 2 1 3 × 3 = log ⁡ 2 3 H(c) = - \frac{1}{3} \log_2 \frac{1}{3} \times 3 = \log_2 3 H(c)=31log231×3=log23

因为我们加了一个特征x:结果为偶数,所以整个系统的熵减小,不确定性降低。

来看下条件熵的表达式:
1.当特征 x x x被固定为值 x i x_i xi时,条件熵为: H ( c ∣ x = x i ) H(c|x=x_i) H(cx=xi)
2.当特征 X X X的整体分布情况被固定时,条件熵为: H ( c ∣ X ) H(c|X) H(cX)
应该不难看出:
\begin{align}
H(c|X) &= -p(x=x_1)H(c|x=x_1) - p(x=x_2)H(c|x=x_2) - \cdots - p(x=x_n)H(c|x=x_n) \
& = -\sum_{i=1}^{n} p(x=x_i)H(c|x = x_i) \
& = -\sum_{i=1}^{n} p(x=x_i) p(c|x = x_i) \log_2 p(c|x = x_i) \
& = -\sum_{i=1}^{n} p(c,x_i) \log_2p(c|x = x_i)
\end{align}

其中,n为特征 X X X所出现所有种类的数量。

那么因为特征X被固定以后,给系统带来的增益(或者说为系统减小的不确定度)为:
\begin{align}
IG(X) &= H© - H(c|X) \
& = -\sum_{i=1}^n p(c_i) \log_2 p(c_i)+\sum_{i=1}^{n} p(x=x_i)H(c|x = x_i)
\end{align}

举个别人文章中例子:文本分类系统中的特征X,那么X有几个可能的值呢?注意X是一个固定的特征,比如关键词"经济",当我们说特征"经济"可能的取值时,实际上只有两个,要么出现,要么不出现。假设 x x x代表 x x x出现,而 x ˉ \bar x xˉ表示 x x x不出现。注意系统包含 x x x x x x不出现与系统根本不包含 x x x可是两回事。
因此固定 X X X时系统的条件熵为:
\begin{align}
H(C|X) &= -p(x)H(c|x) - p(\bar x) H(C| \bar x) \
\end{align}

特征 X X X给系统带来的信息增益(IG)为:
\begin{align}
IG(X) &= H© - H(c|X) \
& =-\sum_{i=1}^n p(c_i) \log_2 p(c_i) + p(x) \sum_{i=1}^n p(c_i|x) \log_2 p(c_i|x) + p(\bar x)\sum_{i=1}^n p(c_i| \bar x) \log_2 p(c_i| \bar x)
\end{align}

式子看上去很长,其实计算起来很简单,都是一些count的操作。 − ∑ i = 1 n p ( c i ) log ⁡ 2 p ( c i ) -\sum_{i=1}^n p(c_i) \log_2 p(c_i) i=1np(ci)log2p(ci)这一项不用多说,就是统计各个类别的概率,将每个类别的样本数量除以总样本量即可。$ p(x) \sum_{i=1}^n p(c_i|x) \log_2 p(c_i|x) 这 一 项 , 这一项, p(x) 表 示 特 征 在 样 本 中 出 现 的 概 率 , 将 特 征 出 现 的 次 数 除 以 样 本 总 量 即 可 。 表示特征在样本中出现的概率,将特征出现的次数除以样本总量即可。 p(c_i|x) 表 示 特 征 出 现 的 情 况 下 , 每 个 类 别 的 概 率 分 别 为 多 少 , 也 全 是 c o u n t 操 作 。 表示特征出现的情况下,每个类别的概率分别为多少,也全是count操作。 countp(c_i| \bar x)$操作以此类推。

3.信息增益做特征选择的优缺点

先来说说优点:
1.信息增益考虑了特征出现与不出现的两种情况,比较全面,一般而言效果不错。
2.使用了所有样例的统计属性,减小了对噪声的敏感度。
3.容易理解,计算简单。

主要的缺陷:
1.信息增益考察的是特征对整个系统的贡献,没有到具体的类别上,所以一般只能用来做全局的特征选择,而没法针对单个类别做特征选择。
2.只能处理离散型的属性值,没法处理连续值的特征。
3.算法天生偏向选择分支多的属性,容易导致overfitting。

4.信息增益比(Infomation Gain Ratio)

前面提到,信息增益的一个大问题就是偏向选择分支多的属性导致overfitting,那么我们能想到的解决办法自然就是对分支过多的情况进行惩罚(penalty)了。于是我们有了信息增益比,或者说信息增益率:
特征 X X X的熵:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X)=-\sum_{i=1}^n p_i \log p_i H(X)=i=1npilogpi
特征 X X X的信息增益 :
I G ( X ) = H ( c ) − H ( c ∣ X ) IG(X) = H(c) - H(c|X) IG(X)=H(c)H(cX)
那么信息增益比为:
g r = H ( c ) − H ( c ∣ X ) H ( X ) g_r = \frac {H(c) - H(c|X)}{H(X)} gr=H(X)H(c)H(cX)

在决策树算法中,ID3使用信息增益,c4.5使用信息增益比。

5.Gini系数

Gini系数是一种与信息熵类似的做特征选择的方式,可以用来数据的不纯度。在CART(Classification and Regression Tree)算法中利用基尼指数构造二叉决策树。
Gini系数的计算方式如下:
G i n i ( D ) = 1 − ∑ i = 1 n p i 2 Gini(D) = 1 - \sum_{i=1}^{n} p_i^2 Gini(D)=1i=1npi2
其中,D表示数据集全体样本, p i p_i pi表示每种类别出现的概率。取个极端情况,如果数据集中所有的样本都为同一类,那么有 p 0 = 1 p_0 = 1 p0=1 G i n i ( D ) = 0 Gini(D) = 0 Gini(D)=0,显然此时数据的不纯度最低。
与信息增益类似,我们可以计算如下表达式:
Δ G i n i ( X ) = G i n i ( D ) − G i n i X ( D ) \Delta Gini(X) = Gini(D) - Gini_X(D) ΔGini(X)=Gini(D)GiniX(D)
上面式子表述的意思就是,加入特征 X X X以后,数据不纯度减小的程度。很明显,在做特征选择的时候,我们可以取 Δ G i n i ( X ) \Delta Gini(X) ΔGini(X)最大的那个

  • 27
    点赞
  • 99
    收藏
    觉得还不错? 一键收藏
  • 12
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值