车牌识别工程
车牌检测
难点痛点
车牌不是一个矩形,传统的目标检测存在缺陷
光照
解决方案
基于centernet的思想,使用任意四边形的检测头,增加角度的回归
车牌识别
crnn在边缘端部署比较麻烦
去除rnn
去除全连接,用conv替代
c++部署工程
工程地址:
https://github.com/JiangYongYu1/PlateRecognize
[github地址](https://github.com/JiangYongYu1/PlateRecognize)
基于onnxruntime-gpu的c++部署,支持linux和windows,提供两个检测和两个识别模型,可以任意组合,支持蓝绿车牌
轻量级检测模型,只能检测-45 -> +45 plate/center_text_mbv3.onnx
稍大检测模型,可以检测360°车牌 plate/center_text_640.onnx
轻量级识别模型, 2.8M,未使用rnn和全连接 plate/plate_reg_res.onnx
稍大识别模型, plate/plate_reg_best.onnx 精度比轻量级高1.3个点
libtorch的c++部署
只提供轻量级模型的torchscript
用法
准备依赖库
编译运行
mkdir build
cd build
cmake ..
./plate_demo ../plate/config_lite.yml ../plate/canvas.png
精度
- lite模型精度:检测和识别合起来的精度 ccpd 95.6%
- big模型精度:检测和识别合起来的精度 ccpd 96.9%