YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新110+)

@

在这里插入图片描述

YOLO11目标检测创新改进与实战案例专栏介绍

💖💖💖目前已有100+ 篇,至少更新150+。

其中包括注意力机制替换、卷积优化、检测头创新、损失与IOU优化、block优化与多层特征融合、轻量级网络设计、多创新点融合创新。

本专栏提供详细的 YOLO11 教程,包括基础知识、源码解析、入门实践、算法改进和项目实战,适合发表YOLO11 学习者订阅。

内容包含 100+多篇独家改进机制,大部分改进用的人较少,适合发表论文,评分高达 96 分。订阅者将获得一键运行的改进文件及答疑交流群支持。

🚀🚀🚀使用ATODL服务器的同学还可以私聊获取搭建好的改进运行环境。让论文发表更轻松。

在这里插入图片描述

拉到文章最底部扫码加群!!

专栏链接: YOLO11目标检测创新改进与实战案例

  • 历史与前沿兼顾:我们不仅关注最新的研究成果,还会持续更新和回顾那些经过实践验证的改进机制。

  • 多方位网络改进

    【注意力机制替换】

    【卷积优化】

    【检测头创新】

    【损失与IOU优化】

    【轻量级网络设计】

    【多创新点融合】

    【C3k2融合创新】

  • 创新点代码:每篇文章都附带详细的步骤和源码,便于您的论文写作和项目实现。

  • 高频更新:每周发布3-10篇最新创新机制文章,确保时刻掌握前沿内容。

创新改进

原理解析

标题创新点链接
YOLOv11 正式发布!你需要知道什么? 另附:YOLOv8 与YOLOv11 各模型性能比较原理解析https://blog.csdn.net/shangyanaf/article/details/143053889
【YOLOv11改进- 原理解析】 YOLO11 架构解析 以及代码库关键代码逐行解析(1)原理解析https://blog.csdn.net/shangyanaf/article/details/143169764

注意力机制

标题创新点链接
1【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块注意力机制https://blog.csdn.net/shangyanaf/article/details/143037077
2【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143041421
3【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143052542
4【YOLOv11改进 - 注意力机制】iRMB: 倒置残差移动块,即插即用的轻量注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143052993
5【YOLOv11改进 - 注意力机制】CoTAttention:上下文转换器注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143099154
6【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征注意力机制https://blog.csdn.net/shangyanaf/article/details/143099416
7【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143099740
8【YOLOv11改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)注意力机制https://blog.csdn.net/shangyanaf/article/details/143107350
9【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力注意力机制https://blog.csdn.net/shangyanaf/article/details/143107915
10【YOLOv11改进 - 注意力机制】NAM:基于归一化的注意力模块,将权重稀疏惩罚应用于注意力机制中,提高效率性能注意力机制https://blog.csdn.net/shangyanaf/article/details/143113290
11【YOLOv11改进 - 注意力机制】SKAttention:聚合分支信息,实现自适应调整感受野大小注意力机制https://blog.csdn.net/shangyanaf/article/details/143114359
12【YOLOv11改进 - 注意力机制】DoubleAttention: 双重注意力机制,全局特征聚合和分配注意力机制https://blog.csdn.net/shangyanaf/article/details/143134797
13【YOLOv11改进 - 注意力机制】TripletAttention:轻量有效的三元注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143194262
14【YOLOv11改进 - 注意力机制】ECA(Efficient Channel Attention):高效通道注意 模块,降低参数量注意力机制https://blog.csdn.net/shangyanaf/article/details/143194441
15【YOLOv11改进 - 注意力机制】MSCA: 多尺度卷积注意力,即插即用,助力小目标检测注意力机制https://blog.csdn.net/shangyanaf/article/details/143194704
16【YOLOv11改进 - 注意力机制】CoordAttention: 用于移动端的高效坐标注意力机制注意力机制https://blog.csdn.net/shangyanaf/article/details/143228656
17【YOLOv11改进 - 注意力机制】DAT(Deformable Attention):可变性注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143229191
18【YOLOv11改进 - 注意力机制】ContextAggregation : 上下文聚合模块,捕捉局部和全局上下文,增强特征表示注意力机制https://blog.csdn.net/shangyanaf/article/details/143231533
19【YOLOv11改进 - 注意力机制】EffectiveSE : 改进的通道注意力模块,减少计算复杂性和信息丢失注意力机制https://blog.csdn.net/shangyanaf/article/details/143233243
20【YOLOv11改进 - 注意力机制】S2Attention : 整合空间位移和分割注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143234560
21【YOLOv11改进 - 注意力机制】Polarized Self-Attention: 极化自注意力 ,更精细的双重注意力建模结构注意力机制https://blog.csdn.net/shangyanaf/article/details/143234817
22【YOLOv11改进 - 注意力机制】LSKNet(Large Selective Kernel Network ):空间选择注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143236398
23【YOLOv11改进 - 注意力机制】CPCA(Channel prior convolutional attention)中的通道注意力,增强特征表征能力注意力机制https://blog.csdn.net/shangyanaf/article/details/143237411
24【YOLOv11改进 - 注意力机制】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143237904
25【YOLOv11改进 - 注意力机制】HCF-Net 之 PPA:并行化注意力设计 | 小目标注意力机制https://blog.csdn.net/shangyanaf/article/details/143248254
26【YOLOv11改进 - 注意力机制】LS-YOLO MSFE:新颖的多尺度特征提取模块 | 小目标/遥感注意力机制https://blog.csdn.net/shangyanaf/article/details/143248466
27【YOLOv11改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强注意力机制https://blog.csdn.net/shangyanaf/article/details/143249013
28【YOLOv11改进 - 注意力机制】Non-Local:基于非局部均值去噪滤波的自注意力模型注意力机制https://blog.csdn.net/shangyanaf/article/details/143249185
29【YOLOv11改进 - 注意力机制】RCS-OSA :减少通道的空间对象注意力,高效且涨点注意力机制https://blog.csdn.net/shangyanaf/article/details/143256430
30【YOLOv11改进 -注意力机制】SGE(Spatial Group-wise Enhance):轻量级空间分组增强模块注意力机制https://blog.csdn.net/shangyanaf/article/details/143257237
31【YOLOv11改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型注意力机制https://blog.csdn.net/shangyanaf/article/details/143258679
32【YOLOv11改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力注意力机制https://blog.csdn.net/shangyanaf/article/details/143258799
33【YOLOv11改进 - 注意力机制】 CAA: 上下文锚点注意力模块,处理尺度变化大或长形目标注意力机制https://blog.csdn.net/shangyanaf/article/details/143259390
34【YOLOv11改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块注意力机制https://blog.csdn.net/shangyanaf/article/details/143259521
35【YOLOv11改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性注意力机制https://blog.csdn.net/shangyanaf/article/details/143261498
36【YOLOv11改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示注意力机制https://blog.csdn.net/shangyanaf/article/details/143261561
37【YOLOv11改进 - 注意力机制】 CBAM:针对卷积神经网络(CNN)设计的新型注意力机制注意力机制https://blog.csdn.net/shangyanaf/article/details/143261800
38【YOLOv11改进 - 注意力机制】 ParNet :并行子网络结构实现低深度但高性能的神经网络架构注意力机制https://blog.csdn.net/shangyanaf/article/details/143289302
39【YOLOv11改进 - 注意力机制】GC Block (GlobalContext): 全局上下文块,高效捕获特征图中的全局依赖关系注意力机制https://blog.csdn.net/shangyanaf/article/details/143315500
40【YOLO11改进 - 注意力机制】Dual-ViT(Dual Vision Transformer):将自注意力的建模分解为对全局语义和细粒度特征的学习注意力机制https://blog.csdn.net/shangyanaf/article/details/143321942
41【YOLO11改进 - 注意力机制】HAT(Hybrid Attention Transformer,)超分辨率混合注意力机制注意力机制https://blog.csdn.net/shangyanaf/article/details/143323349
42【YOLO11改进 - 注意力机制】ELA(Efficient Local Attention):深度卷积神经网络的高效局部注意力机制注意力机制https://blog.csdn.net/shangyanaf/article/details/143324666
43【YOLO11改进 - 注意力机制】STA(Super Token Attention) 超级令牌注意力机制注意力机制https://blog.csdn.net/shangyanaf/article/details/143350954
44【YOLO11改进 - 注意力机制】Deformable-LKA Attention:可变形大核注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143351139
45【YOLO11改进 - 注意力机制】BRA(bi-level routing attention )双层路由注意力注意力机制https://blog.csdn.net/shangyanaf/article/details/143351336
46【YOLO11改进 - 注意力机制】GCT(Gaussian Context Transformer):高斯上下文变换器注意力机制https://blog.csdn.net/shangyanaf/article/details/143370762
47【YOLO11改进 - 注意力机制】HCF-Net 之 MDCR:多稀释通道细化器模块 ,以不同的稀释率捕捉各种感受野大小的空间特征 | 小目标注意力机制https://blog.csdn.net/shangyanaf/article/details/143390431
48【YOLO11改进 - 注意力机制】HCF-Net 之 DASI: 维度感知选择性整合模块 | 小目标注意力机制https://blog.csdn.net/shangyanaf/article/details/143407057

CONV

标题创新点链接
1【YOLOv11改进-卷积Conv 】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积CONVhttps://blog.csdn.net/shangyanaf/article/details/142998598
2【YOLOv11改进-卷积Conv】 ParameterNet:DynamicConv(Dynamic Convolution):2024最新动态卷积CONVhttps://blog.csdn.net/shangyanaf/article/details/143023455
3【YOLOv11改进-卷积Conv】 ODConv(Omni-Dimensional Dynamic Convolution):全维度动态卷积CONVhttps://blog.csdn.net/shangyanaf/article/details/143023997
4【YOLOv11改进-卷积Conv】 SAConv(Switchable Atrous Convolution):可切换的空洞卷积CONVhttps://blog.csdn.net/shangyanaf/article/details/143098353
5【YOLOv11改进-卷积Conv】DualConv( Dual Convolutional):用于轻量级深度神经网络的双卷积核CONVhttps://blog.csdn.net/shangyanaf/article/details/143099245
6【YOLOv11改进 - 卷积Conv】SPConv:去除特征图中的冗余,大幅减少参数数量 | 小目标CONVhttps://blog.csdn.net/shangyanaf/article/details/143194890
7【YOLOv11改进 - 卷积Conv】SCConv :即插即用的空间和通道重建卷积CONVhttps://blog.csdn.net/shangyanaf/article/details/143207088
8【YOLOv11改进 - 卷积Conv】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小目标问题CONVhttps://blog.csdn.net/shangyanaf/article/details/143220921
9【YOLOv11改进 - 卷积Conv】RFAConv:感受野注意力卷积,创新空间注意力CONVhttps://blog.csdn.net/shangyanaf/article/details/143221086
10【YOLOv11改进-卷积Conv】 OREPA(Online Convolutional Re-parameterization):在线卷积重参数化CONVhttps://blog.csdn.net/shangyanaf/article/details/143221336
11【YOLOv11改进 - 卷积Conv】 RFB (Receptive Field Block):多分支卷积块CONVhttps://blog.csdn.net/shangyanaf/article/details/143237656
12【YOLOv11改进 - 卷积Conv】Diverse Branch Block(DBB):多样分支模块CONVhttps://blog.csdn.net/shangyanaf/article/details/143301409
13【YOLO11改进 - 卷积Conv】RefConv:重新参数化的重聚焦卷积模块CONVhttps://blog.csdn.net/shangyanaf/article/details/143351548

其他

标题创新点链接
1【YOLOv11改进 - 混合卷积注意力机制】ACmix(Mixed Self-Attention and Convolution) :自注意力与卷积混合模型混合卷积注意力机制https://blog.csdn.net/shangyanaf/article/details/142981217
2【YOLOv11改进 - 注意力机制】CAFM(Convolution and Attention Fusion Module):卷积和注意力融合模块混合卷积注意力机制https://blog.csdn.net/shangyanaf/article/details/143248692
3【YOLOv11改进】ADown:YOLOv9轻量化下采样操作下采样https://blog.csdn.net/shangyanaf/article/details/143315609
4【YOLOv11改进 - SPPF】发论文神器!LSKA注意力改进SPPF,增强多尺度特征提取能力,高效涨点!!!SPPFhttps://blog.csdn.net/shangyanaf/article/details/143258938
5【YOLOv11改进-SPPF】 Focal Modulation :使用焦点调制模块替代SPPFSPPFhttps://blog.csdn.net/shangyanaf/article/details/143280849
6【YOLO11改进 - SPPF】 AIFI : 基于注意力的尺度内特征交互,保持高准确度的同时减少计算成本SPPFhttps://blog.csdn.net/shangyanaf/article/details/143388430
7【YOLO11改进 - 采样】HWD: Haar小波降采样,用于语义分割的降采样模块,减少特征图的空间分辨率采样https://blog.csdn.net/shangyanaf/article/details/143429137

特征融合

标题创新点链接
1【YOLOv11改进 - 特征融合】SDI:多层次特征融合模块,替换contact操作特征融合https://blog.csdn.net/shangyanaf/article/details/143233436
2【YOLOv11改进 - 特征融合】 GELAN:YOLOV9 通用高效层聚合网络,高效且涨点特征融合https://blog.csdn.net/shangyanaf/article/details/143256244
3【YOLOv11改进 - 特征融合】Slim-neck:目标检测新范式,既轻量又涨点特征融合https://blog.csdn.net/shangyanaf/article/details/143314827
4【YOLOv11改进 - 特征融合NECK】CARAFE:轻量级新型上采样算子,助力细节提升特征融合https://blog.csdn.net/shangyanaf/article/details/143134074
5【YOLOv11改进 - 特征融合】DySample :超轻量级且高效的动态上采样器特征融合https://blog.csdn.net/shangyanaf/article/details/143248563
6【YOLO11改进 - 特征融合】FFCA-YOLO: 提升遥感图像中小目标检测的精度和鲁棒性特征融合https://blog.csdn.net/shangyanaf/article/details/143386943
7【YOLO11改进 - 特征融合】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征特征融合https://blog.csdn.net/shangyanaf/article/details/143530088
8【YOLO11改进 - 特征融合】ASF-YOLO:SSFF融合+TPE编码+CPAM注意力,提高检测和分割能力特征融合https://blog.csdn.net/shangyanaf/article/details/143530787

主干

标题创新点链接
1【YOLOv11改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构Backbonehttps://blog.csdn.net/shangyanaf/article/details/143315275
2【YOLOv11改进 - Backbone主干】清华大学CloFormer AttnConv :利用共享权重和上下文感知权重增强局部感知,注意力机制与卷积的完美融合Backbonehttps://blog.csdn.net/shangyanaf/article/details/143315038
3【YOLO11改进 - Backbone主干】2024最新轻量化网络MobileNetV4替换YOLO11的BackBoneBackbonehttps://blog.csdn.net/shangyanaf/article/details/143494907
4【YOLO11改进 - Backbone主干】微软 EfficientViT替换YOLO11的BackBone: 高效视觉transformer与级联组注意力,平衡速度与精度Backbonehttps://blog.csdn.net/shangyanaf/article/details/143496026
5【YOLO11改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。Backbonehttps://blog.csdn.net/shangyanaf/article/details/143506618
6【YOLO11改进】SwinTransformer骨干网络: 基于位移窗口的层次化视觉变换器Backbonehttps://blog.csdn.net/shangyanaf/article/details/143529324

C3k2融合

标题创新点链接
1【YOLO11改进 - C3k2融合】C3k2融合SCConv(Self-Calibrated Convolutions): 自校准卷积C3k2融合 | 卷积Convhttps://blog.csdn.net/shangyanaf/article/details/143335641
2【YOLO11改进 - C3k2融合】C3k2融合SCConv( Spatial and Channel Reconstruction Convolution) :即插即用的空间和通道重建卷积C3k2融合 | 卷积Convhttps://blog.csdn.net/shangyanaf/article/details/143335895
3【YOLO11改进 - C3k2融合】C3k2融合Diverse Branch Block(DBB)二次创新:多样分支模块C3k2融合 | 卷积Convhttps://blog.csdn.net/shangyanaf/article/details/143350687
4【YOLO11改进 - C3k2融合】C3k2融合PPA二次创新:并行化注意力设计 | 小目标C3k2融合 | 注意力机制https://blog.csdn.net/shangyanaf/article/details/143332221
5【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构C3k2融合 | 卷积Convhttps://blog.csdn.net/shangyanaf/article/details/143358187
6【YOLO11改进 - C3k2融合】C3k2融合动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务C3k2融合 | 卷积Convhttps://blog.csdn.net/shangyanaf/article/details/143431559
7【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测C3k2融合 | 卷积Convhttps://blog.csdn.net/shangyanaf/article/details/143435663
8【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测C3k2融合 | 卷积Convhttps://blog.csdn.net/shangyanaf/article/details/143494332
9【YOLO11改进 - C3k2融合】C3k2融合Deformable-LKA二次创新C3k2_DLKA:可变形大核注意力C3k2融合 | 注意力机制https://blog.csdn.net/shangyanaf/article/details/143494142
10【YOLO11改进 - 特征融合】C3k2融合ODConv(Omni-Dimensional Dynamic Convolution):全维度动态卷积C3k2融合 | 卷积Convhttps://blog.csdn.net/shangyanaf/article/details/143532233

多模块融合改进

标题创新点链接
1【YOLO11改进- 多模块融合改进】CPCA + CARAFE : 通道先验卷积注意力与上采样算子的融合改进,助力细节提升!多模块融合改进https://blog.csdn.net/shangyanaf/article/details/143428926
2【YOLO11改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点多模块融合改进https://blog.csdn.net/shangyanaf/article/details/143434474
3【YOLO11改进- 多模块融合改进】ResBlock + CBAM: 基于ResBlock的通道+空间注意力,增强特证提取多模块融合改进https://blog.csdn.net/shangyanaf/article/details/143369644
4【YOLO11改进- 多模块融合改进】ResBlock + GAM: 基于ResBlock的全局注意力机制ResBlock_ GAM,增强特证提取多模块融合改进https://blog.csdn.net/shangyanaf/article/details/143369878
- YOLO算法 - YOLO11 - YOLOV11 - 目标检测 - 机器学习 - YOLO算法是什么 - YOLO算法原理 - YOLO11教程 - YOLO11源码解析 - YOLOV11入门指南 - YOLOV11项目实战 - 目标检测技术 - YOLO在目标检测中的应用 - 机器学习与YOLO算法 - 深度学习与YOLOV11的结合 - YOLO11图像识别 - YOLOV11模型训练 - YOLO算法优化 - YOLO目标检测应用场景 - 机器学习在目标检测中的应用 - 计算机视觉与YOLO算法 - YOLO算法改进方法 - YOLOV11在小目标检测中的应用 - YOLO11如何提高精度 - YOLO与深度学习目标检测 - YOLO11最新版本 - YOLOV11创新点 - YOLO11与YOLOv8对比 - YOLO目标检测最佳实践 - 目标检测算法发展趋势 - YOLO算法在智能安防中的应用 - YOLO11在医疗图像中的应用 - YOLO算法性能对比 - YOLO11在交通监控中的应用 - YOLOV11分类任务 - YOLO目标检测mAP提升 - YOLO算法遮挡物检测 - YOLO11目标追踪技术 - YOLO11的关键点检测 - YOLOV11 OBB检测 - YOLOv8小目标检测 - YOLOV11遮挡物识别优化 - YOLO11算法在大规模数据集的应用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值