一、序列数据
二、统计工具
在时间t观察到xt,那么得到T个不独立的随机变量(x1 ~ xT)~ P(x)
(前后不受到影响,互相独立)
使用条件概率展开 p(a,b)=p(a)p(b|a)=p(b)p(a|b)
三、序列模型
正向:先得到X1,再推x2,x2是依赖于x1,同理,x3依赖于之前的x1,x2.
反向:(已知未来推过去)先得到xT,再反过来推。在物理层面上是不可行的,因为很多的理论是基于之前的理论。
四、自回归模型
自回归模型:给过去的数据,预测下一个数据
对条件概率建模
预测xt,对之前的xt-1个数据进行建模,也就是训练xt-1个数据,表示为f(x1,x2,…xt-1)
核心思想:怎么计算 P(xt | xt−1, . . . , x1)
4.1自回归模型(马尔科夫假设)
假设在现实情况下相当⻓的序列 xt−1, . . . , x1 可能是不必要的(如果数据很长要往前推很多,在很多时候太前的数据是没有太多的参考意义,并且会增加计算量)。
因此我们只需要满⾜某个⻓度为τ 的时间跨度,即使⽤观测序列 xt−1, . . . , xt−τ,只与τ个数据点相关,例如在过去的数据上训练一个MLP模型。
4.2 潜变量模型(隐变量⾃回归模型)
引用潜变量ht来表示过去的信息ht=f(x1,…xt-1)
这样xt=p(xt|ht)
例如h1 与之前的x和h有关,x1 只与h1有关,这样可以的到xt只与一个或者两个变量有关(xt-1、ht-1)
五、总结
1、时序数据中,当前的数据狠之前观察到的数据相关
2、自回归模型使用自身过去数据来预测未来
3、马尔科夫模型假设当前只跟最近少数数据相关(固定长度),从而简化模型
4、潜变量模型使用潜变量来概括历史信息(模型变成两块,更新潜变量和更新数据)