蓝桥题目----线性dp例题

本文讲解了如何使用动态规划解决小蓝走楼梯问题,即计算从1阶到n阶的不同走法数量,并探讨了如何找到两个数组的最长公共子序列长度。通过状态转移方程和一维/二维数组的设计,展示了如何将递归问题转化为可优化的DP解决方案。
摘要由CSDN通过智能技术生成

可以用dp处理的问题:重叠子问题(计算大问题的时候 要多次计算小问题) , 最优子结构

难点:设计好dp的状态方程
设置所求的答案为数组dp[ ] [ ];
一维数组/二维数组 = ?以前的递归

题目描述:小蓝要走楼梯,他一次可以走 1 个台阶或者2 个台阶,问走到第 n 个台阶时,一共有多少种走法?

dp[n]为走到第n个台阶时的走

最长子序列:元素在A,B中都有,且在AB中出现的先后顺序一样

给定一个长度为 N 数组 a 和一个长度为 M 的数组 b。

请你求出它们的最长公共子序列长度为多少。

两个循环遍历a,b数组,
两种情况:1.当a,b数组的元素相同时,之前的状态加1;
2.元素不同时,

#include<bits/stdc++.h>
using namespace std;
int dp[1000][1000],A[1000],B[1000];
int main()
{
    int N,M;
    cin>>N>>M;
    for(int i=1;i<=N;i++)
    cin>>A[i];
    for(int j=1;j<=M;j++)
    cin>>B[j];
    for(int i=1;i<=N;i++)
     for(int j=1;j<=M;j++)
      {
          if(A[i]==B[j]){  //则A[i],B[j]都可以存在在子序列中,
              dp[i][j] = dp[i-1][j-1]+1;
          }
          else{ 
              dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
          }
      }
      cout << dp[N][M];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值