【总结】文本分类网络总结

本文总结了文本分类网络的发展,从深度金字塔卷积神经网络到高效的词袋模型,探讨了层次方法和哈夫曼树在优化计算中的作用。此外,还介绍了Attention机制在文本分类中的应用及其优势,强调了数据分析、迭代质量和超参数调节在实际项目中的重要性。
摘要由CSDN通过智能技术生成

【总结】文本分类网络总结

🍊

一、DPCNN

DPNNdeep pyramid convolutional Neural Networks原文发表于2017年ACL 论文

DPCNN:深度金字塔卷积神经网络;

1)摘要

单从网络深度出发,不考虑参数量,运行速度以及训练难度,梯度爆炸等问题;深度更深的网络能取得更好的性能,深度挖掘数据特征;这在图像领域已经证实了,不过在NLP领域,我们的主角不再是CNN而是Attention;随着elmogpt-2bertxlNet等出现,说明深度神经网络在自然语言处理领域也是很有必要的;

2)dpcnn结构

深度金字塔网络

3)dpcnn特点

1)参考ResNet思路,采取近路连接(shortcut);避免因深度导致的梯度消失问题;

2)固定CNN特征核数量,确保下采样过程中,特征维度不断减小;构成一个下采样的金字塔(倒置的金字塔);这样能增加提取的特征对原文的覆盖长度,从而提取长距离的文本特征;

4)代码

dpcnn.py

# coding: UTF-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


# 参数设置
parameters = {
   }
parameters['voc_size'] = 30000
parameters['num_class'] = 2
parameters['embedding_dim'] = 300


"""DPCNN"""

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

        voc_size = parameters['voc_size']
        embedding_dim = parameters['embedding_dim']
        self.num_filters = 250
        num_class = parameters['num_class']


        # embedding
        self.embedding = nn.Embedding(voc_size, embedding_dim, padding_idx=voc_size - 1)

        self.conv_region = nn.Conv2d(1, self.num_filters, (3, embedding_dim), stride=1)
        self.conv = nn.Conv2d(self.num_filters, self.num_filters, (3, 1), stride=1)
        self.max_pool = nn.MaxPool2d(kernel_size=(3, 1), stride=2)
        self.padding1 = nn.ZeroPad2d((0, 0, 1, 1))  # top bottom
        self.padding2 = nn.ZeroPad2d((0, 0, 0, 1))  # bottom
        self.relu = nn.ReLU()
        self.fc = nn.Linear<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值