vijos1732
这题个人感觉。。80分暴力好拿,直接n^2*ln(n)
90分我不知道是干嘛的。。我是想不出n^2算法
先来说下80分暴力
很显然,我们令x,y的最大公约数=t
那么这个点到(0,0)上除它以外就有t-1个点
于是直接暴力gcd
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<string>
#include<map>
#include<cstring>
#include<vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(int i=j;i<=k;i++)
#define Dow(i,j,k) for(int i=k;i>=j;i--)
using namespace std;
int n,m;
ll ans;
inline int gcd(int x,int y)
{
return y?gcd(y,x%y):x;
}
int main()
{
scanf("%d%d",&n,&m);
For(i,1,n)
For(j,1,m)
{
ll t=gcd(i,j)-1;
ans+=2*t+1;
}
printf("%lld",ans);
}
。。这是评测结果
接下来的标算的话,,复杂度应该是。。n^1.5。。吧?我也不知道啊
令f[i]代表所有gcd值为i的(x,y)点对个数,因为他们对答案的贡献全都是2*i-1,所以可以通过结合律直接算在一起
但是要容斥一下,比如说,我们的f[2]肯定会包含f[4],f[6],f[8]……
然后我就假装这个容斥的时间是sqrt(n)的了(逃
f[i]的初始值很简单,就是(n/i)*(m/i),这个应该很好理解
那么下面附上代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<string>
#include<map>
#include<cstring>
#include<vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(ll i=j;i<=k;i++)
#define Dow(i,j,k) for(ll i=k;i>=j;i--)
using namespace std;
ll n,m;
ll ans;
ll f[100001];
int main()
{
scanf("%d%d",&n,&m);
ll p=min(n,m),p1=max(n,m);
Dow(i,1,p)
{
f[i]=(n/i)*(m/i);
for(ll j=i*2;j<=p1;j+=i)
f[i]-=f[j];
ans+=(ll)f[i]*(2*i-1);
}
printf("%lld",ans);
}