vijos1732——能量采集

vijos1732
这题个人感觉。。80分暴力好拿,直接n^2*ln(n)

90分我不知道是干嘛的。。我是想不出n^2算法

先来说下80分暴力

很显然,我们令x,y的最大公约数=t

那么这个点到(0,0)上除它以外就有t-1个点

于是直接暴力gcd

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<string>
#include<map>
#include<cstring>
#include<vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(int i=j;i<=k;i++)
#define Dow(i,j,k) for(int i=k;i>=j;i--)
using namespace std;
int n,m;
ll ans;
inline int gcd(int x,int y)
{
    return y?gcd(y,x%y):x;
}
int main()
{
    scanf("%d%d",&n,&m);
    For(i,1,n)
        For(j,1,m)
        {
            ll t=gcd(i,j)-1;
            ans+=2*t+1;
        }
    printf("%lld",ans);
}

。。这是评测结果

这里写图片描述

接下来的标算的话,,复杂度应该是。。n^1.5。。吧?我也不知道啊

令f[i]代表所有gcd值为i的(x,y)点对个数,因为他们对答案的贡献全都是2*i-1,所以可以通过结合律直接算在一起

但是要容斥一下,比如说,我们的f[2]肯定会包含f[4],f[6],f[8]……

然后我就假装这个容斥的时间是sqrt(n)的了(逃

f[i]的初始值很简单,就是(n/i)*(m/i),这个应该很好理解

那么下面附上代码

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<string>
#include<map>
#include<cstring>
#include<vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(ll i=j;i<=k;i++)
#define Dow(i,j,k) for(ll i=k;i>=j;i--)
using namespace std;
ll n,m;
ll ans;
ll f[100001];
int main()
{
    scanf("%d%d",&n,&m);
    ll p=min(n,m),p1=max(n,m);
    Dow(i,1,p)
    {
        f[i]=(n/i)*(m/i);
        for(ll j=i*2;j<=p1;j+=i)
            f[i]-=f[j];
        ans+=(ll)f[i]*(2*i-1);
    }
    printf("%lld",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值