第一眼好假啊。。
题意:给定一棵树,树上的点有权值,求所有无序点对(x,y)间路径的和,a->b的路径定义为a到b经过的所有的权值异或值
第一眼还以为可以n^2*lg跑啊。。然而数据范围打破了我美好的梦想- -
N^2*lg就是枚举两个点然后算一个lca,把Lca的贡献算上,然后1->x的路径xor1->y的路径嘛
然而n=100000???
怎么做
不会。
嗯。。看了题解。。好神奇啊
我们考虑每一个二进制位的影响,进行树形dp
每次dp只处理这一位
然后怎么dp呢?
我们用num[x][1]表示从x出发,向下走,共有多少条异或为1的路径,num[x][0]同理
因为我们只要找到x出发的两条路径,一条为1,一条为0,则该位对答案的贡献有2^i,i表示枚举第i位
所以树形dp下去,乘法原理算一下就可以了
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <map>
#include <cstring>
#include <ctime>
#include <vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(ll i=j;i<=k;i++)
#define Dow(i,j,k) for(ll i=k;i>=j;i--)
using namespace std;
inline void read(ll &tx){ ll x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} tx=x*f; }
inline void write(ll x){ if (x<0) putchar('-'),x=-x; if (x>=10) write(x/10); putchar(x%10+'0'); }
inline void writeln(ll x){write(x);puts("");}
using namespace std;
ll ans;
ll num[1000001][2];
ll n,a[1000001],x,y,poi[1000001],nxt[1000001],f[1000001],cnt;
inline void add(ll x,ll y){poi[++cnt]=y;nxt[cnt]=f[x];f[x]=cnt;}
inline void dfs(ll x,ll fa,ll now)
{
ll one=(a[x]>>now)&1;
num[x][one]=1;num[x][one^1]=0;
ll tmp=0;
for(ll i=f[x];i;i=nxt[i])
{
ll t=poi[i];
if(t==fa) continue;
dfs(t,x,now);
tmp+=num[t][0]*num[x][1]+num[t][1]*num[x][0];
num[x][one^1]+=num[t][1];num[x][one]+=num[t][0];
}
ans+=(ll)tmp*(1LL<<now);
}
int main()
{
read(n);
For(i,1,n) read(a[i]),ans+=(ll)a[i];
For(i,1,n-1) read(x),read(y),add(x,y),add(y,x);
For(i,0,31)
dfs(1,0,i);
writeln(ans);
}