Mahmoud and a xor trip——766E 树形dp

E. Mahmoud and a xor trip

第一眼好假啊。。

题意:给定一棵树,树上的点有权值,求所有无序点对(x,y)间路径的和,a->b的路径定义为a到b经过的所有的权值异或值


第一眼还以为可以n^2*lg跑啊。。然而数据范围打破了我美好的梦想- -

N^2*lg就是枚举两个点然后算一个lca,把Lca的贡献算上,然后1->x的路径xor1->y的路径嘛

然而n=100000???

怎么做


不会。


嗯。。看了题解。。好神奇啊


我们考虑每一个二进制位的影响,进行树形dp

每次dp只处理这一位


然后怎么dp呢?

我们用num[x][1]表示从x出发,向下走,共有多少条异或为1的路径,num[x][0]同理


因为我们只要找到x出发的两条路径,一条为1,一条为0,则该位对答案的贡献有2^i,i表示枚举第i位


所以树形dp下去,乘法原理算一下就可以了

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <map>
#include <cstring>
#include <ctime>
#include <vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(ll i=j;i<=k;i++)
#define Dow(i,j,k) for(ll i=k;i>=j;i--)
using namespace std;
inline void read(ll &tx){   ll x=0,f=1;char ch=getchar();   while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}  while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}  tx=x*f; }
inline void write(ll x){    if (x<0) putchar('-'),x=-x; if (x>=10) write(x/10);   putchar(x%10+'0');  }
inline void writeln(ll x){write(x);puts("");}
using namespace std;
ll ans;
ll num[1000001][2];
ll n,a[1000001],x,y,poi[1000001],nxt[1000001],f[1000001],cnt;
inline void add(ll x,ll y){poi[++cnt]=y;nxt[cnt]=f[x];f[x]=cnt;}
inline void dfs(ll x,ll fa,ll now)
{
	ll one=(a[x]>>now)&1;
	num[x][one]=1;num[x][one^1]=0;
	ll tmp=0;
	for(ll i=f[x];i;i=nxt[i])
	{
		ll t=poi[i];
		if(t==fa)	continue;
		dfs(t,x,now);
		tmp+=num[t][0]*num[x][1]+num[t][1]*num[x][0];
		num[x][one^1]+=num[t][1];num[x][one]+=num[t][0];
	}
	ans+=(ll)tmp*(1LL<<now);
}
int main()
{
	read(n);
	For(i,1,n)	read(a[i]),ans+=(ll)a[i];
	For(i,1,n-1)	read(x),read(y),add(x,y),add(y,x);
	For(i,0,31)
		dfs(1,0,i);
	writeln(ans);
}
     


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值