数值优化——牛顿迭代法求解函数零点

一. 问题导入

已知lnx+x^2 =0 在(0,1)范围内有解,用数值方法求解, 精度0.0001

二. 算法原理

首先,f(x) 的值近似于其泰勒展开式:
在这里插入图片描述
如果只考虑前两项,我们就能得到一个近似等式:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x) = f(x_{0}) + f^{'}(x_{0})(x - x_{0}) f(x)=f(x0)+f(x0)(xx0)
代入f(x) = 0,则有:
f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) = 0 f(x_{0}) + f^{'}(x_{0})(x - x_{0}) = 0 f(x0)+f(x0)(xx0)=0
x = x 0 − f ( x 0 ) f ′ ( x 0 ) x = x_{0} - \frac{f(x_{0})}{f^{'}(x_{0})} x=x0f(x0)f(x0)
故在求函数零点时,有如下迭代公式:
x i + 1 = x i − f ( x i ) f ′ ( x i + 1 ) x_{i+1} = x_{i} - \frac{f(x_{i})}{f^{'}(x_{i+1})} xi+1=xif(xi+1)f(xi)

C++代码实践

#include <iostream>
#include <vector>
#include <math.h>
using namespace std;

// 已知lnx+x^2 =0 在(0,1)范围内有解,用数值方法求解, 精度0.0001
// 1
// fx = lnx + x^2
// fx’ = (1 / x) + 2 * x
// x(n+1) = x(n) - f(x)/ f(x)'

double newton_Solve(double x) {
	double x0 = x;
	double x1 = x0 - (log(x0) + pow(x0, 2)) / ((1 / x0) + 2 * x0);
	int max_iter = 1000;
	int iter = 0;

	while (iter < max_iter && abs(x0 - x1) > 1e-4) {
		x0 = x1;
		x1 = x0 - (log(x0) + pow(x0, 2)) / ((1 / x0) + 2 * x0);
		iter += 1;
	}
	return x1;
}

int main() {
	double val = newton_Solve(0.5);
	cout.precision(2);   //设置两位有效数字
	cout << val;
	return 0;

}

三. 扩展——求函数的极值点

代入f’(x) = 0,则有:
f ′ ( x 0 ) + f ′ ′ ( x 0 ) ( x − x 0 ) = 0 f^{'}(x_{0}) + f^{''}(x_{0})(x - x_{0}) = 0 f(x0)+f′′(x0)(xx0)=0
x = x 0 − f ′ ( x 0 ) f ′ ′ ( x 0 ) x = x_{0} - \frac{f^{'}(x_{0})}{f^{''}(x_{0})} x=x0f′′(x0)f(x0)
故求函数的极值点时,我们有以下的迭代公式:
x i + 1 = x i − f ′ ( x i ) f ′ ′ ( x i ) x_{i+1} = x_{i} - \frac{f^{'}(x_{i})}{f^{''}(x_{i})} xi+1=xif′′(xi)f(xi)

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值