[规划算法]Hybrid A *算法原理

HybridA*算法是一种考虑车辆运动学约束的图搜索算法,扩展了A*算法的搜索维度。它通过两种启发式方法进行路径规划,包括考虑车辆约束的非碰撞启发式和考虑障碍物的无约束启发式。路径由运动学约束的节点路径和Reed-Sheeps或Dubins曲线连接的路径组成。在接近目标或稀疏环境时,HybridA*使用精确曲线连接以提高效率。该算法在路径规划中兼顾了车辆动态和环境障碍,适用于自动驾驶等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.算法简介

Hybrid A*算法是一种图搜索算法,改进于A*算法。与普通的A*算法区别在于,Hybrid A*规划的路径考虑了车辆的运动学约束,即满足了车辆的最大曲率约束。

由于A*具有启发式,可以实现快速的结点搜索。核心在于结点权重如何确定(路径代价的设置)。

Hybrid A*算法的启发式包括两种: non-holonomic without-obstacles和holonomic with obstacles。

前者考虑了车辆的运动约束,但不考虑障碍物,一般使用RS曲线,Dubins曲线;后者将车辆当成网格地图上面的点,但考虑了障碍物。

图1 基于Hybrid A*的路径规划算法流程

2.Hybrid A*规划路径的组成

Hybrid A*规划的路径由两部分组成,第一部分是考虑了车辆运动学的探索结点连接而成的路径;第二部分是使用ReedSheeps曲线连接中间点位姿与目标位姿的路径。

1)Hybrid A*的结点拓展

Hybrid A*的搜索空间不仅考虑了x,y方向的拓展,还考虑了Θ方向的探索。相比普通A*的探索空间,Hybrid A*的结点拓展是三维的,因此需要更多的计算量。

图3 Hyrbrid A*的结点扩展:往前往后探索结点

图4 普通A*和Hybrid A* 结点拓展的区别

考虑车辆运动学约束,对地图网格化,生成结点,起始位姿到结点的路径为path1;

2)Analytical Expansion

Hyrbrid A*偶尔会尝试使用RS曲线或Dubins曲线尝试连接当前的结点与目标结点。这一方面可以精确地连接到目标位姿,另一方向可提高搜索的速度。如果得到的曲线与环境障碍物无碰撞,可以提取结束搜索。此时,由结点探索得到的路径为path1,RS曲线或Dubins曲线为path2,那么规划得到的路径为path={path1,path2}。

这一操作在接近目标位姿或者非常稀疏的环境中比较有作用。如果每次尝试连接都需要做碰撞检测,会极大增加计算量。

3.Hybrid A*的启发式

Hybrid A*的有两个启发式,一般会取二者的最大值作为约束。

其中约束启发式结合了车辆的运动学约束,忽略了环境。一般使用RS曲线或Dubins曲线的长度。这种启发式约束考虑了当前航向角以及转弯半径,可以确保车辆以正确的航向接近目标位姿。当车辆越来越接近目标时,这一约束会发挥较重要的作用。

无约束启发式则忽略了车辆的运动学特性,只考虑了障碍物。一般使用普通A*搜索得到的路径(当前结点为目标点,HA*搜索的目标结点为起始结点),并使用欧几里得距离表示。这使得 A* 搜索的封闭列表存储到目标的所有最短距离 g(x),因此可以用作查找表,而不是在 HA* 进行时启动新的搜索。这个考虑了障碍物的启发式可以引导车辆绕过障碍物或U型弯道。

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值