正定矩阵和半正定矩阵

定义

正定和半正定这两个词的英文分别是positive definite和positive semi-definite,其中,definite是一个形容词,表示“明确的、确定的”等意思。

【定义1】给定一个大小为n\times n的实对称矩阵 A ,若对于任意长度为 n 的非零向量 x ,有 x^TAx>0 恒成立,则矩阵 A 是一个正定矩阵。

【例1】单位矩阵 I \in \mathbb{R}^{n \times n}是否是正定矩阵?

解:设向量\boldsymbol{x} \in \mathbb{R}^{n}为非零向量,则

\boldsymbol{x}^{T} \boldsymbol{I} \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{x}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}>0

故,单位矩阵  I \in \mathbb{R}^{n \times n}是正定矩阵。

单位矩阵是正定矩阵 (positive definite)。

【例2】 实对称矩阵 A=\left[\begin{array}{ccc} {2} & {-1} & {0} \\ {-1} & {2} & {-1} \\ {0} & {-1} & {2} \end{array}\right] \in \mathbb{R}^{3 \times 3} 是否是正定矩阵?

解:设向量 \boldsymbol{x}=\left[\begin{array}{l} {x_{1}} \\ {x_{2}} \\ {x_{3}} \end{array}\right] \in \mathbb{R}^{3} 为非零向量,则

\boldsymbol{x}^{T} A \boldsymbol{x}=\left[\begin{array}{ccc} {\left(2 x_{1}-x_{2}\right)} & {\left(-x_{1}+2 x_{2}-x_{3}\right)} & {-x_{2}+2 x_{3}} \end{array}\right]\left[\begin{array}{l} {x_{1}} \\ {x_{2}} \\ {x_{3}} \end{array}\right]

=x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+x_{3}^{2}>0

因此,矩阵 A 是正定矩阵。

【定义2】给定一个大小为n\times n的实对称矩阵 A ,若对于任意长度为 n 的非零向量 x ,有 x^TAx\geqslant 0 恒成立,则矩阵 A 是一个半正定矩阵。

根据正定矩阵和半正定矩阵的定义,我们也会发现:半正定矩阵包括了正定矩阵,与非负实数 (non-negative real number)和正实数 (positive real number)之间的关系很像。

实际上,我们可以将 y=\boldsymbol{x}^{T} A \boldsymbol{x} 视作  y=a x^{2}的多维表达式。当我们希望 y=\boldsymbol{x}^{T} A \boldsymbol{x} \geq 0 对于任意向量 x 都恒成立,就要求矩阵 A 是一个半正定矩阵,对应于二次函数, y=a x^{2}>0, \forall x 需要使得 a \geq 0 .

若给定任意一个正定矩阵 A \in \mathbb{R}^{n \times n} 和一个非零向量 \boldsymbol{x} \in \mathbb{R}^{n} ,则两者相乘得到的向量 \boldsymbol{y}=A \boldsymbol{x} \in \mathbb{R}^{n} 与向量 x 的夹角恒小于 \frac{\pi}{2} . (等价于: \boldsymbol{x}^{T} A \boldsymbol{x}>0 .)

若给定任意一个正定矩阵 A \in \mathbb{R}^{n \times n} 和一个非零向量 \boldsymbol{x} \in \mathbb{R}^{n} ,则两者相乘得到的向量 \boldsymbol{y}=A \boldsymbol{x} \in \mathbb{R}^{n} 与向量 x 的夹角恒小于或等于 \frac{\pi}{2} . (等价于: \boldsymbol{x}^{T} A \boldsymbol{x} \geqslant 0 .)

 

性质

     正定矩阵

  1. 正定矩阵的行列式恒为正;
  2. 实对称矩阵AA正定当且仅当AA与单位矩阵合同;
  3. 两个正定矩阵的和是正定矩阵;
  4. 正实数与正定矩阵的乘积是正定矩阵。

    等价命题:
    对于n阶实对称矩阵A,下列条件是等价的:

  1. A是正定矩阵;
  2. A的一切顺序主子式均为正;
  3. A的一切主子式均为正;
  4. A的特征值均为正;
  5. 存在实可逆矩阵C,使A=C'C;
  6. 存在秩为n的m×n实矩阵B,使A=B'B;
  7. 存在主对角线元素全为正的实三角矩阵R,使A=R'R

求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。

    半正定矩阵

  1. 半正定矩阵的行列式是非负的;
  2. 两个半正定矩阵的和是半正定的;
  3. 非负实数与半正定矩阵的数乘矩阵是半正定的。

     等价条件:

  1. A是半正定的;
  2. A的所有主子式均为非负的;
  3. A的特征值均为非负的;
  4. 存在n阶实矩阵C,使A=C'C;
  5. 存在秩为r的r×n实矩阵B,使A=B'B。

直观理解正定、半正定矩阵:

\begin{aligned} &X^{T} M X \geq 0\\ &X^{T} Y \geq 0 \quad(Y=M X)\\ &\cos (\theta)=\frac{X^{T} Y}{\|X\|_{*}\|Y\|} \geq 0 \end{aligned}

||X||, ||Y||代表向量 X,Y的长度,\theta是他们之间的夹角。正定、半正定矩阵的直觉代表一个向量经过它的变化后的向量与其本身的夹角小于等于90度。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值