1.卡尔曼滤波
2.扩展卡尔曼滤波(EKF)
扩展卡尔曼滤波用于非线性模型的状态估计,参考博客:
参考博客1
参考博客2
参考博客3
参考博客4
3.无迹卡尔曼滤波(UKF)
具体步骤:
(1) sigma点采样
(2)用状态空间方程进行UT变换,即递推k时刻sigma点在下一时刻的位置
(3)由递推后关于Xk+1的sigma点,逆推k+1时刻状态量的期望和方差
(4)为了推出输出Z的情况,再一次对X(k+1)进行UT变换,先进行sigma点采样。
(5)用观测方程将X(k+1)上的sigma点变换为Z(k+1)上的点集。
(6)对Z(k+1)上的点集进行加权求和,得到均值和协方差。
注:!!!!上图最后一个求Pxz的公式有误,应为下方这个式子。
(7)计算卡尔曼增益矩阵
(8) 更新状态和协方差矩阵
注:UKF参考博客
参考博客1
参考博客2
参考博客3
参考博客4(C++实现)
参考博客5(C++实现)
参考博客6
参考博客7(实例1)
参考博客8
参考博客9
参考博客10
4.递归最小二乘法(RLS)
个人理解:RLS其实是卡尔曼滤波(KF)的一部分,他是KF中的一个步骤,在不知道系统模型时,采用观测方程对状态进行估计,即为RLS;若已知系统状态空间模型,则先结合模型进行预测,再进行与RLS相似的步骤。
讲解视频
参考博客1
参考博客2
参考博客3
参考博客4
参考博客5