作为学习自动驾驶的一部分,在这里把学习无损卡尔曼滤波的过程记录一下,以下内容会有很多都是参考别的博客,下面也会给出链接:
无损卡尔曼滤波UKF的原理
参考链接: https://blog.csdn.net/lijil168/article/details/83315595
从前面学习卡尔曼滤波,及扩展卡尔曼滤波的过程来看,KF的核心原理是根据系统的估算值及协方差,测量值及协方差推算出最优的估计值及协方差:如图
再通过预测方程,测量方程,更新方程这一系列过程,不断的迭代,预测,更新位置,达到最佳的估计状态,上篇博客中给出了数学推导;
卡尔曼滤波的推测过程:https://blog.csdn.net/Young_Gy/article/details/78542754?utm_source=blogxgwz5
EKF是将非线性方程通过泰勒近似展开线性化之后,继续使用上面的公式。
而UKF类似于将高斯分布中的均值ÿ