无损卡尔曼滤波学习笔记

这篇博客详细介绍了无损卡尔曼滤波(UKF)的原理,包括UKF如何处理非线性方程,通过选取sigma点和计算权值来求解状态转移和测量的期望与方差。文章引用了多个参考来源,并简述了UKF的过程,以及找到关键点后求解新状态的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       作为学习自动驾驶的一部分,在这里把学习无损卡尔曼滤波的过程记录一下,以下内容会有很多都是参考别的博客,下面也会给出链接:

无损卡尔曼滤波UKF的原理

   参考链接:  https://blog.csdn.net/lijil168/article/details/83315595

   从前面学习卡尔曼滤波,及扩展卡尔曼滤波的过程来看,KF的核心原理是根据系统的估算值及协方差,测量值及协方差推算出最优的估计值及协方差:如图

                        

                                     

再通过预测方程,测量方程,更新方程这一系列过程,不断的迭代,预测,更新位置,达到最佳的估计状态,上篇博客中给出了数学推导;

卡尔曼滤波的推测过程:https://blog.csdn.net/Young_Gy/article/details/78542754?utm_source=blogxgwz5

                                                        

EKF是将非线性方程通过泰勒近似展开线性化之后,继续使用上面的公式。

而UKF类似于将高斯分布中的均值ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值