无损卡尔曼滤波学习笔记

这篇博客详细介绍了无损卡尔曼滤波(UKF)的原理,包括UKF如何处理非线性方程,通过选取sigma点和计算权值来求解状态转移和测量的期望与方差。文章引用了多个参考来源,并简述了UKF的过程,以及找到关键点后求解新状态的方法。
摘要由CSDN通过智能技术生成

       作为学习自动驾驶的一部分,在这里把学习无损卡尔曼滤波的过程记录一下,以下内容会有很多都是参考别的博客,下面也会给出链接:

无损卡尔曼滤波UKF的原理

   参考链接:  https://blog.csdn.net/lijil168/article/details/83315595

   从前面学习卡尔曼滤波,及扩展卡尔曼滤波的过程来看,KF的核心原理是根据系统的估算值及协方差,测量值及协方差推算出最优的估计值及协方差:如图

                        

                                     

再通过预测方程,测量方程,更新方程这一系列过程,不断的迭代,预测,更新位置,达到最佳的估计状态,上篇博客中给出了数学推导;

卡尔曼滤波的推测过程:https://blog.csdn.net/Young_Gy/article/details/78542754?utm_source=blogxgwz5

                                                        

EKF是将非线性方程通过泰勒近似展开线性化之后,继续使用上面的公式。

而UKF类似于将高斯分布中的均值ÿ

卡尔曼滤波(Kalman Filter)是一种用于估计系统状态的递归滤波器,它通过融合系统的测量值和预测值来提供最优的状态估计。卡尔曼滤波器假设系统的状态和测量值都是高斯分布,并且系统的动态和测量模型都是线性的。 扩展卡尔曼滤波(Extended Kalman Filter,EKF)是卡尔曼滤波的一种扩展,用于处理非线性系统。EKF通过在每个时间步骤上线性化非线性模型来近似系统的动态和测量模型,然后使用卡尔曼滤波的方法进行状态估计。 无损卡尔曼滤波(Unscented Kalman Filter,UKF)是对EKF的一种改进,它通过使用无损变换(unscented transformation)来近似非线性函数的传播和观测模型。相比于EKF,UKF能够更准确地估计非线性系统的状态。 下面是使用Matlab实现卡尔曼滤波、扩展卡尔曼滤波无损卡尔曼滤波的简单示例代码: 1. 卡尔曼滤波: ```matlab % 系统动态模型 A = [1 1; 0 1]; B = [0.5; 1]; C = [1 0]; D = 0; % 系统噪声和测量噪声的协方差矩阵 Q = [0.01 0; 0 0.01]; R = 1; % 初始化状态和协方差矩阵 x0 = [0; 0]; P0 = eye(2); % 测量值 y = [1.2; 2.3; 3.5; 4.7]; % 卡尔曼滤波 x_kalman = zeros(2, length(y)); P_kalman = zeros(2, 2, length(y)); x_kalman(:, 1) = x0; P_kalman(:, :, 1) = P0; for k = 2:length(y) % 预测步骤 x_pred = A * x_kalman(:, k-1) + B * u; P_pred = A * P_kalman(:, :, k-1) * A' + Q; % 更新步骤 K = P_pred * C' / (C * P_pred * C' + R); x_kalman(:, k) = x_pred + K * (y(k) - C * x_pred); P_kalman(:, :, k) = (eye(2) - K * C) * P_pred; end % 输出结果 disp(x_kalman); ``` 2. 扩展卡尔曼滤波: ```matlab % 系统动态模型和测量模型(非线性) f = @(x) [x(1) + x(2); x(2)]; h = @(x) x(1); % 系统噪声和测量噪声的协方差矩阵 Q = [0.01 0; 0 0.01]; R = 1; % 初始化状态和协方差矩阵 x0 = [0; 0]; P0 = eye(2); % 测量值 y = [1.2; 2.3; 3.5; 4.7]; % 扩展卡尔曼滤波 x_ekf = zeros(2, length(y)); P_ekf = zeros(2, 2, length(y)); x_ekf(:, 1) = x0; P_ekf(:, :, 1) = P0; for k = 2:length(y) % 预测步骤 x_pred = f(x_ekf(:, k-1)); F = [1 1; 0 1]; % 线性化系统动态模型 P_pred = F * P_ekf(:, :, k-1) * F' + Q; % 更新步骤 H = [1 0]; % 线性化测量模型 K = P_pred * H' / (H * P_pred * H' + R); x_ekf(:, k) = x_pred + K * (y(k) - h(x_pred)); P_ekf(:, :, k) = (eye(2) - K * H) * P_pred; end % 输出结果 disp(x_ekf); ``` 3. 无损卡尔曼滤波: ```matlab % 系统动态模型和测量模型(非线性) f = @(x) [x(1) + x(2); x(2)]; h = @(x) x(1); % 系统噪声和测量噪声的协方差矩阵 Q = [0.01 0; 0 0.01]; R = 1; % 初始化状态和协方差矩阵 x0 = [0; 0]; P0 = eye(2); % 测量值 y = [1.2; 2.3; 3.5; 4.7]; % 无损卡尔曼滤波 x_ukf = zeros(2, length(y)); P_ukf = zeros(2, 2, length(y)); x_ukf(:, 1) = x0; P_ukf(:, :, 1) = P0; for k = 2:length(y) % 预测步骤 [x_pred, P_pred] = unscented_transform(f, x_ukf(:, k-1), P_ukf(:, :, k-1), Q); % 更新步骤 [y_pred, S] = unscented_transform(h, x_pred, P_pred, R); C = P_pred * S' / S / S'; x_ukf(:, k) = x_pred + C * (y(k) - y_pred); P_ukf(:, :, k) = P_pred - C * S * C'; end % 输出结果 disp(x_ukf); ``` 以上是简单的卡尔曼滤波、扩展卡尔曼滤波无损卡尔曼滤波的Matlab代码示例。请注意,这只是一个简单的演示,实际应用中可能需要根据具体问题进行适当的修改和调整。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值