Temporal Action Proposal 论文分享

TURN TAP: Temporal Unit Regression Network for Temporal Action Proposals(ICCV2017)

Motivation

实现快速和准确地抽取出视频中的语义片段

Proposed Method

-提出了TURN模型预测proposal并用temporal coordinate regression来校正proposal的边界

-通过复用unit feature来实现快速计算
TURN框架

主要步骤如下:

  • Video Unit Processing:
    将输入的视频平均分为多个video units,每一个unit包含16帧。将每一个unit送入visual encoder(C3D)中,提取unit-level的特征。

  • Clip Pyramid Modeling:
    以每一个unit为anchor unit,构造一个clip pyramid。首先,每一个temporal window pyramid(深蓝色部分)由{1,2,4,…}个unit构成,然后在每个temporal window的前后加上一定数量的context unit(浅蓝色部分)构成clip。将每一个clip送入Feature Pooling,最终的feature由下面的公式表示:
    这里写图片描述
    其中这里写图片描述为internal units,这里写图片描述为context units,P为Mean Pooling。

  • Unit-level Temporal Coordinate Regression:
    网络包含两个输出:第一个输出confidence score判断clip中是否包含action,第二个输出temporal coordinate regression offsets。回归偏移量由下式表达:
    这里写图片描述
    s和e分别表示起始unit和终止unit的位置
  • Loss function:
    正样本定义为:(1)与GT的tIoU最大的样本(2)与GT的tIoU大于0.5的样本
    负样本定义为:与GT的tIoU为0的样本
    Multi-task Loss:
    这里写图片描述
    第一项 Lcls
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值