- 博客(16)
- 收藏
- 关注
原创 【mini2440】开发环境搭建
VMware或Virtual Box都可以,个人安装ubuntu1404。3.安装ARM的GCC交叉编译器。相应的gcc版本,并解压。2.安装串口相关工具。需要安装32位支持库。
2023-05-25 00:25:52 204
原创 2021-09-01小米软开笔试
小米 2021.9.1笔试题题一 合并有序链表 (题目很简单,但是输入输出贼烦)#include<vector>#include<iostream>#include<algorithm>#include<string.h>#include<sstream>using namespace std;int main(){ int m, n; string input; while (getline(cin
2021-09-01 22:22:55 353
原创 Udacity Self-Driving Car的训练
Udacity Self-Driving Car的训练下载模拟器:https://github.com/udacity/self-driving-car-sim数据集地址:https://github.com/rslim087a/track加载数据以及统计数据分布代码 columns = ['center', 'left', 'right', 'steering', 'throttle', 'reverse', 'speed'] data = pd.read_csv(os.path.j
2020-11-09 16:09:23 673 2
转载 keras.preprocessing.image.imagedatagenerator中文文档
keras.preprocessing.image.imagedatagenerator中文文档
2020-10-27 09:53:31 308
原创 Airsim 模仿学习之模型训练
Model Training导入的包from keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequential, Modelfrom keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Lambda, Input, concatenatefrom keras.layers.normalization impor
2020-10-18 21:27:55 510
转载 torch.nn.Module和torch.nn.LSTM 相关文档
torch.nn 相关文档搬运官方链接class torch.nn.Module所有网络的基类,你的模型也应该继承这个类。import torch.nn as nnimport torch.nn.functional as Fclass Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5)# submodul
2020-10-13 10:44:35 1209
原创 Airsim_on_Unity遇到问题汇总
连接不上显示模拟器TypeError: unsupported operand type(s) for : ‘AsyncIOLoop’ and ‘float’ 解决 升级 msgpack-rpc-python 打开环境 pip install --upgrade msgpack-rpc-python 图像获取后,格式转换出现问题img1d = np.fromstring(response.image_data_uint8, dtype=np.uint8) # reshape ar.
2020-10-12 16:48:07 936
原创 self-driving car 数据增强
Data preprocessing and balancing to enhance end to end learning in self-driving vehicle 论文笔记摘要:驾驶车辆一直是一项艰巨的任务,无论是任何车辆,因为机器人和人工智能在过去十年中已经发展了多倍,这给了我们自动化包括驾驶在内的许多过程的技术基础。开发自动驾驶汽车是许多公司目前的研究领域,如谷歌、特斯拉、英伟达和优步。他们提出的几种方法是英伟达的行为克隆、CommaAI的OPENPILOT、特斯拉的自动驾驶仪,所有这些都
2020-10-12 16:31:43 1152
翻译 ## End-to-End Learning of Driving Models with Surround-View Cameras and Route Planners 翻译
End-to-End Learning of Driving Modelswith Surround-View Cameras and Route Planners 翻译google翻译摘要对于人类驾驶员来说,后视镜和侧视镜对于安全驾驶至关重要。它们提供了汽车周围发生的事情的更完整的视图。人类司机也大量利用他们的思维导图进行导航。尽管如此,已经公布了几种方法来学习只使用前置摄像头而不使用路线规划器的驾驶模型。信息的缺乏使得自动驾驶任务变得相当棘手。我们在一个更现实的环境中研究这个问题,这个环境由一
2020-10-12 09:56:47 498
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人