机器学习中基于可变型部件模型的检测算法的研究分析

可变形部件模型:用简单的方式解释即这个模型可以 允许存在形态和空间位置的变化和偏移的局部构件的物体的外观特征和位置变化进行组合分析的一个模型,该模型在行人检测上有很好的应用,因为人的各个部位是不变的,只是通过不断行走位置和各个部位的相对状态进行了改变,该模型可以很好的检测出来。
可变形部件模型概念是一种基于星型结构的模型,这种模型将低分辨率的全局检测模板作为整个模型的中心节点,然后通过分析样本集合,依次将各个组件模型确定在各个分支节点上,并将所有分支节点与中心节点进行连接。最终的检测,就是在中心节点的检测得分值与分支节点处检测得分值的加权和。

该模型通过对人体目标的长宽比特征纹理特征进行组合分析将样本划分为不同的子集并构建多个模型,这些模型存在包含关系。在检测中如果多个不同大小的模型对同一位置得出检测响应,则可以选择模型得分最大的情况作为输出结果。进一步的可以检测模型判断得出检测人体目标的其他相关信息,如姿态,身高等等相关知识。

与采用HOG和SVM来进行人体目标检测方法不同的是,可变型部件模型的训练模型需要对样本图像构建图像特征金字塔图谱,并在金字塔特征图中推算出隐式变量

与HOG特征计算方式不同,使用可变型部件模型
第一,使用主成分分析(PCA)的方式对样本集特征图进行降维处理
第二,通过对局部组成特征隐式变量的偏移位置与检测目标大小的建立拟合预测模型,可以进一步的提升检测位置精度。

可变形部件模型(DeformablePart Model)由三部分组成:
(1) 一个较为粗糙的,覆盖整个目标的全局根模版(或叫做根滤波器)。
(2) 几个高分辨率的部件模版(或叫做部件滤波器)。
(3) 部件模版相对于根模版的空间位置。

滤波器(模版)就是一个权重向量,一个w * h大小的滤波器F是一个含w * h * 9 * 4个权重的向量(9*4是一个HOG单元的特征向量的维数)。所谓滤波器的得分就是此权重向量与HOG金字塔中w * h大小子窗口的HOG特征向量的点积

计算方法:滤波器的响应得分值是特征向量F(x,y)与其权重值G(x,y)点乘的乘积值,点(x,y)是图像模板的左上角的点。

可变形部件模型由根滤波器和多个部分滤波器组成,根滤波器计算出目标的位置给予响应的得分值,多个部分滤波器以根滤波器2倍的分辨率获得更多的部分信息,给出其得分值。由于图像分辨率较低,虚检和漏检的情况容易发生,需要多个部分滤波器,分别以较高的分辨率检测整体的各个部分,捕捉到物体的边缘或者轮廓信息,最终以二者的加权得分值来得到整个分类器。

特征金字塔:在进行检测时,图像将会以金字塔的形式进行放缩处理,以一个固定化的比例系数不断地缩小得到新图像,所有图像就构成了金字塔结构。在不同大小的图像的不同位置处,获得的特征值是不同的,因此使用特征金字塔来对获得的所有特征值进行定义,方便后续的检测计算。在实际过程中,主要通过重复的扫描,抽样来计算一个标准结果的图像金字塔,从而获得特征金字塔。
对于不同尺度大小的金字塔来说,它们所处的层级是不同的,给每一个金字塔定义一个层数,本文使用参数,逐渐进行尺度上的缩小,选择好的放缩比例是获得良好模型的关键。

模板:进行检测的条件之一就是获得模板,在这里设定F是一个w*h滤波器,H表示一个多分辨率图像集也就是特征金字塔,p(x,y,l)表示位置信息,是点(x,y)在图像金字塔的第l层处,并设定&(H,p,w,h)为图像H在p位置处处以F滤波器进行检测得到的特征向量。本文使用的特征均为HOG特征,使用(F0,P1,P2……pn,b)来描述整个可变型模型,其中F0表示根滤波器,(p1,p2,p3……,pn)分别表示不同的根滤波器。
在这里插入图片描述
在这里插入图片描述
混合模型:上述描述的是单一模型,如果图像中有多个目标,或者某一个目标有多种形态(如人体有站立形态和蹲坐形态)则需要建立多个模型。将多个单一模型合并组合起来构成组合模型。
若一个混合模型含有m个单一模型则该混合模型可表示为M=(M1,…,Mn), M,表示第Z个单一模型(其中1<L<JZ}。对于混合模型的目标假设都是针对于混合模型中的某一单一模型而言的,如M,其对应的各个滤波器z=(Fo,P1,……Pn,b),目标假设其获得的分数就是对于混合模型中第i个模型而
言的。
为了使用混合模型来检测目标物体,在混合模型中使用匹配算法,使其独立搜索某一个单一模型的根滤波器所在的位置,获得其最高的相应得分值,从而获得目标假设。此处可理解为调用子单一模型,从而得到相应的得分值。
隐支持向量机: 在基于部件的检测算法中,训练用的数据是带标定框的图像数据,其包括PASCAL数据集、INRIA数据集等。但会产生部分信息遗漏的情况,也就是说图像数据并不能够提供完整的输入信息,造成信息缺失训练效果不佳的情况。缺失的信息就是隐支持向量机的潜在值信息,比如说组件结构中各个部件的位置信息、标签信息等。
训练模型的步骤:
在建立了可变形部件模型后,就需要对模型进行训练,得到训练模板。本文中采用SVM训练方法得到滤波器模板,主要由以下几个步骤构成:
(1)初始化根滤波器。选择尺度大小与训练样本一致的根滤波器,然后使用SVM方法来训练根滤波器。
(2)更新根滤波器。采用滑动窗口的方式使根滤波器在训练样本中遍历扫描,在图像中找出响应得分值最大的位置。该得分最大值的位置就是根滤波器所在的位置。但在利用滑动窗口的方法扫描时,检测得到的根滤波器存在位置重叠,以重叠的位置对根滤波器进行标记,并不断使用新样本重新组成新的样本库更新根滤波器。
(3)初始化部分滤波器。部分滤波器的位置与根滤波器的位置相关联,在根滤波器所在位置处应用贪婪算法,根据训练样本集的数据计算得到各部分滤波器得分值最大的位置,并将这一位置区域标记作为部分滤波器所在的位置。
(4)更新分类器。不断输入正负样本集数据,重复训练操作,使用更新的样本来训练分类器,每次输入一张样本图像,分类器就将会进行一次更新操作,不断重复从而使滤波器不断更新改善,直到分类器达到最优的效果为止。
训练过程 :模板的训练本质就是对根滤波器、部分滤波器的参数值的训练,得到良好的参数值。
在进行物体检测过程中,通常会依据检测对象不同使用SVM, Adaboost等训练方法。在使用可变形部件模型时,采用添加了隐藏信息的LSVM训练方法,进行训练,隐藏信息为标定值和部件位置。

基于概率密度分布的被遮挡物体检测算法
图像中的目标物体被另一个物体遮挡,因此可以根据遮挡情况给出一个遮挡概率模型,本模型主要实现把物体之间实际遮挡的范围大小转换成为概率数值,进而对这个遮挡进行处理。
遮挡物体遮挡到物体的某一部分是随机的,不同位置被遮挡的概率是一样的。如果遮挡物体处于蓝色区域时,就能够将这个点完全遮挡到。同样,当遮挡物体处于绿色区域时,就不能遮挡到这个黑点。

实验过程主要包括两个阶段:训练阶段以及检测阶段。下面分别就实验的几个步骤进行介绍。训练阶段:训练阶段实际就是分类器的训练,根据数据样本集中获得的特征来训练希望得到的分类器,以便在检测阶段利用获得的分类器对新来的数据样本进行分类检测。分类器的优劣将会影响以后检测阶段的检测结果,因此训练一个好的分类器至关重要。本文使用HOG特征在边缘梯度方向能够获得良好的检测结果,已经证明其应用在行人检测领域内获得了良好的结果。

在实际实验过程中,首先对数据样本集提取特征值,然后进行放缩处理得到对应特征金字塔结构,再利用LSVM(线性支持向量机)学习方法对获得的特征进行分类训练,经过大量的正负样本训练以及不断更新滤波器来获得最佳的检测过程。

检测阶段:检测阶段主要采用训练得到的分类器模板对待检测图像进行检测操作。使用得到的分类器模板对待检测图像中进行遍历检测,根据图像中提取的特征与分类器进行比对来查找该图像是否存在目标,如果存在则在目标所在位置处进行标定狂标定,在图像中画出目标行人的所在位置,如果不存在目标则对图像不做任何操作。

DPM算法是什么?https://blog.csdn.net/weixin_41798111/article/details/79989794

第五章总结以及展望:本文主要采用物体检测技术特别是处理遮挡情况下物体检测技术进行研究分析。详细描述了物体检测技术领域的一般结构。在此基础上,针对于可变领部件模型的优缺点,在细胞单元提取特征,并在检测得分的基础上计算被遮挡物体的可见概率密度值,将其转化为新目标函数中的权重系数,响应地提高被部分遮挡物体的检测得分值使其超过检测阀值而能够被检测得到。

有待提高改进的方面:
(1>应用级联的方式,在对遮挡情况进行判断时,应用更多的信息而不是单一信息,并加强各个部件之间的联系,由此获得更加优异的检测效果。
(2>改变星型结构,变为网状结构,使得部件之间的联系更加紧密,相互之间互相影响,同时使部件对根不再依赖,扩展层次结构,由两层模型引伸为多级结构,使其检测时更加稳定。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值