在练习机器学习时,您可能会选择使用L1范数或L2范数进行正则化或作为损失函数,等等。
L1-范数也称为最小绝对偏差(LAD),最小绝对误差(LAE),又叫做 taxicab-norm 或者 Manhattan-norm。这基本上是将目标值(Yi)与估计值 (f(xi)) 之间的绝对差(S)的总和最小化:
L2-范数也称为最小二乘。它基本上是最小化目标值(Y i)与估计值(f(x i)之间的差(S)的平方和:
L1-norm和L2-norm的差异可以迅速总结如下:
L2 | L1 |
---|---|
鲁棒性 (弱) | 鲁棒性 (强) |
解法 (稳定) | 解法 (不稳定) |
唯一解 (是) | (可能有多个解) |
没有特征选择 | 内置特征选择 |