L1正则和L2正则

原文链接:https://blog.csdn.net/w5688414/article/details/78046960

https://blog.csdn.net/jinping_shi/article/details/52433975

补充链接:

https://segmentfault.com/a/1190000018378231?utm_source=tag-newest

范数(norm)

数学上,范数是一个向量空间或矩阵上所有向量的长度和大小的求和。简单一点,我们可以说范数越大,矩阵或者向量就越大。范数有许多种形式和名字,包括最常见的:欧几里得距离(Euclideandistance),最小均方误差(Mean-squared Error)等等。

大多数时间,你会在等式中看见范数像下面那样:
||x||,x可以是一个向量或者矩阵。
例如一个向量

其欧几里得范数为:

即向量a的模的大小。上面的例子展示了怎样计算欧几里得范数,或者叫做**l2-norm.**

X的Lp-norm的规范定义如下:

有趣的是,lp-norm看起来非常相似,但是他们的数学特性非常不同,结果应用场景也不一样。因此,这里详细介绍了几种范式。

L1-norm

X的l1-norm的定义为:

它有很多名字和许多种形式,它的昵称是曼哈顿范数(Manhattannorm)。两个向量或矩阵的l1-norm为

在计算机视觉科学家眼中,它叫做绝对偏差和(Sum of AbsoluteDifference,SAD)。

在一般情况下,它可以用于一个单元的偏差计算:

它叫做平均绝对误差(Mean-Absolute Error,MAE).

L2-norm

所有范数中最流行的是l2-norm。总体上,它用于工程和科学领域的方方面面。基本定义如下,l2-norm:

它的平方形式,在计算机视觉领域为平方差的和(Sumof Squared Difference,SSD)

它最出名的应用是在信号处理领域,为均方误差(Mean-SquaredError,MSE),它被用来计算两个信号的相似度,质量(quality)和关系。MSE为:

正则化(Regularization)

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作 ℓ1​-norm 和 ℓ2​-norm,中文称作 L1正则化 和 L2正则化,或者 L1范数 和 L2范数。

L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项a\left \| w \right \|_{1}
即为L1正则化项。

下图是Python中Ridge回归的损失函数,式中加号后面一项a\left \| w \right \|_{2}^{2},即为L2正则化项。

一般回归分析中回归 a 表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下:

  • L1正则化是指权值向量w中各个元素的绝对值之和,通常表示为a\left \| w \right \|_{1}
  • L2正则化是指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为

一般都会在正则化项之前添加一个系数,Python中用α表示,一些文章也用λ表示。这个系数需要用户指定。

那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。

  •     L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
  •     L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的)

假设有如下带L1正则化的损失函数:

其中J0J0​是原始的损失函数,加号后面的一项是L1正则化项,αα是正则化系数。注意到L1正则化是权值的绝对值之和,JJ是带有绝对值符号的函数,因此JJ是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数J0J0​后添加L1正则化项时,相当于对J0J0​做了一个约束。令L=a\sum _{w}\left | w \right |,则J = J^{_{0}} + L,此时我们的任务变成L约束下求出J0​取最小值的解。考虑二维的情况,即只有两个权值w1和w2,此时L = \left \| w^{^{1}} \right \| + \left \| w^{^{2}} \right \| 对于梯度下降法,求解J0J0​的过程可以画出等值线,同时L1正则化的函数LL也可以在w^{1} w^{2} 的二维平面上画出来。如下图:

 

图中等值线是J0​的等值线,黑色方形是L函数的图形。在图中,当J0​等值线与L图形首次相交的地方就是最优解。上图中J0​与LL在L的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(w1,w2)=(0,w) 。可以直观想象,因为L函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0​与这些角接触的机率会远大于与 L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

而正则化前面的系数α,可以控制L图形的大小。α越小,L的图形越大(上图中的黑色方框);α越大,L的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值(w1,w2)=(0,w)中的w可以取到很小的值。

类似,假设有如下带L2正则化的损失函数:

J = J_{0} + a \sum _{w} w^{2}

同样可以画出他们在二维平面上的图形,如下:

@图2 L2正则化

二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0​与L相交时使得w1或w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因.。

L2正则化和过拟合

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

那为什么L2正则化可以获得值很小的参数?

以线性回归中的梯度下降法为例。假设要求的参数为θ,h_{\theta }(x)是我们的假设函数。线性回归一般使用平方差损失函数。单个样本的平方差是(h_{\theta }(x) - y)^{2},如果考虑所有样本,损失函数是对每个样本的平方差求和,假设有m个样本,线性回归的代价函数如下,为了后续处理方便,乘以一个常数\frac{1}{2m}

在梯度下降算法中,需要先对参数求导,得到梯度。梯度本身是上升最快的方向,为了让损失尽可能小,沿梯度的负方向更新参数即可。

最开始也提到L1正则化一定程度上也可以防止过拟合。当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。

新加:

观看CS231n的视频时,当训练准确率远大于测试准确率时,意味着出现了过拟合。如何降低过拟合-》增大正则项权重。

问:正则项的权重和正则项的系数相同吗?

   L1 正则项中减小系数能防止过拟合。两者相同吗?

 

 

 

问 :为什么正则化后,权重小的损失的更多,而权重大的则损失的少?

答 :https://blog.csdn.net/qq_40378390/article/details/82954735

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值