Covid19, Analysis, Visualization, Prediction
Author: ZhuoFei, Zhou
Date: 2020/10/5
Introduction
Covid-19
Novel Coronavirus 2019, on 12 January 2020, WHO officially named it 2019-NCOV. Coronaviruses are a large family of viruses known to cause colds and more serious illnesses such as Middle East Respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). Novel Coronavirus is a novel coronavirus strain that has never been found in humans before. More information is available.百度百科
data
Data from COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.link
-
time series covid19 confirmed global.csv.(github link).
-
time series covid19 deaths global.csv.(github link)
-
time serise covid19 recoverd global.csv(github link)
-
cases contry.csv.(github link)
-
cases time.csv. (github link)
download here:
- “time_series_covid19_confirmed_global.csv”
- “time_series_covid19_deaths_global.csv”
- “time_series_covid19_recovered_global.csv”
- “cases_country.csv”
- “cases_time.csv”
import some julia packages.
using DataFrames
using CSV
using DelimitedFiles
using BenchmarkTools
using Queryverse
using Dates
using Plots
pgfplotsx()
using Flux
using Flux: @epochs
using IterTools: ncycle
using Parameters: @with_kw
Analysis
read Global data, and Data-operate
#read data:
dt, Header = readdlm("time_series_covid19_confirmed_global.csv", ',', header=true)
dt_deaths, Header_deaths = readdlm("time_series_covid19_deaths_global.csv", ',', header=true)
dt_recover,Header_recov = readdlm("time_series_covid19_recovered_global.csv",',',header=true)
creat a new dataframe to store data
confirmed_num = []
deaths_num = []
recovered_num = []
for i in 5:259
push!(confirmed_num, sum(dt[:, i]))
push!(deaths_num, sum(dt_deaths[:, i]))
push!(recovered_num, sum(dt_recover[:,i]))
end
dates = Date(2020, 1, 22):Day(1):Date(2020, 10, 2)
Global_num = DataFrame(Date=dates, confirmed_num=confirmed_num, deaths_num=deaths_num, recovered_num=recovered_num)
n, = size(confirmed_num)