Covid19, Analysis, Visualization, Prediction

本文由ZhuoFei, Zhou撰写,介绍了Covid19的背景,提供了数据来源,并进行了数据分析,包括病例数的时间序列可视化,死亡率和恢复率分析。通过线性回归和神经网络预测了全球趋势,揭示了疫情的指数增长模式。" 125113554,13794659,大河盲盒小程序源码修复与玩法升级:积分系统、碎片奖品与偷菜模式,"['微信小程序', '小程序开发', '游戏机制', '积分运营', '盲盒玩法']
摘要由CSDN通过智能技术生成

Covid19, Analysis, Visualization, Prediction


Author: ZhuoFei, Zhou

Date: 2020/10/5


Introduction

Covid-19

Novel Coronavirus 2019, on 12 January 2020, WHO officially named it 2019-NCOV. Coronaviruses are a large family of viruses known to cause colds and more serious illnesses such as Middle East Respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). Novel Coronavirus is a novel coronavirus strain that has never been found in humans before. More information is available.百度百科

data

Data from COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.link

download here:

  • “time_series_covid19_confirmed_global.csv”
  • “time_series_covid19_deaths_global.csv”
  • “time_series_covid19_recovered_global.csv”
  • “cases_country.csv”
  • “cases_time.csv”

import some julia packages.

using DataFrames
using CSV
using DelimitedFiles
using BenchmarkTools
using Queryverse
using Dates
using Plots
pgfplotsx()

using Flux
using Flux: @epochs
using IterTools: ncycle 
using Parameters: @with_kw

Analysis

read Global data, and Data-operate

#read data:
dt, Header = readdlm("time_series_covid19_confirmed_global.csv", ',', header=true)
dt_deaths, Header_deaths = readdlm("time_series_covid19_deaths_global.csv", ',', header=true)
dt_recover,Header_recov = readdlm("time_series_covid19_recovered_global.csv",',',header=true)

creat a new dataframe to store data

confirmed_num = []
deaths_num = []
recovered_num = []
for i in 5:259
	push!(confirmed_num, sum(dt[:, i]))
	push!(deaths_num, sum(dt_deaths[:, i]))
	push!(recovered_num, sum(dt_recover[:,i]))
end
dates = Date(2020, 1, 22):Day(1):Date(2020, 10, 2)
Global_num = DataFrame(Date=dates, confirmed_num=confirmed_num, deaths_num=deaths_num, recovered_num=recovered_num)

n, = size(confirmed_num)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值