使用 LangChain、Pinecone 和 LLM(如 GPT-4 和 ChatGPT)构建基于文档的问答系统

目录

一、简介

二、为什么语义搜索+GPT问答比微调GPT更好?

2.1、更广泛的知识覆盖:

         2.2、特定于上下文的答案:

         2.3、适应性

         2.4、更好地处理模糊查询

三、LangChain 模块

四、设置环境

五、加载文档

六、分割文档

七、使用 OpenAI 嵌入文档

八、使用 Pinecone 进行向量搜索

九、查找相似的文档

十、使用 LangChain 和 OpenAI LLM 进行问答

十一、示例查询和答案

十二、结论


一、简介

今天我们将深入探讨使用LangChainPinecone创建基于文档的问答系统的过程,利用最新的大文本语言模型(LLMs),如OpenAI GPT-4和ChatGPT。

LangChain 是一个强大的框架,专为开发由语言模型驱动的应用程序而设计,而 Pinecone 则是一个高效的向量数据库,用于构建高性能的向量搜索应用程序。我们的用例重点是在特定的文档上回答问题,仅依赖于文档中的信息来生成准确和符合上下文的答案。

通过将语义搜索的能力与GPT等LLM的卓越能力相结合,我们将演示如何构建一种利用尖端人工智能技术的先进文档问答系统。

二、为什么语义搜索+GPT问答比微调GPT更好?

在深入实现之前,我们先来了解一下使用语义搜索+GPT问答相比微调GPT的优势:

2.1、更广泛的知识覆盖:

语义搜索 + GPT 问答主要包括两个核心步骤,首先从大量的文档中找到相关的段落,然后根据这些段落生成答案。这种方法可以提供更准确和最新的信息,利用来自各种来源的最新信息。而微调GPT则依赖于模型在训练期间编码的知识,这些知识随着时间的推移可能变得过时或不完整。

2.2、特定于上下文的答案:

语义搜索+GPT问答可以通过将答案基于相关文档中的特定段落来生成更具上下文的、更精确的答案。然而,微调的GPT模型可能会根据模型中嵌入的通用知识生成答案,这些答案可能不够准确或与问题的上下文无关。

2.3、适应性

语义搜索组件可以轻松更新新的信息源或调整到不同的领域,使其更适应特定的用例或行业。相比之下,微调GPT需要重新训练模型,这可能耗时且计算成本高昂。

2.4、更好地处理模糊查询

语义搜索可以通过识别与问题相关的最相关段落来消除查询的歧义。与没有适当上下文的微调GPT模型相比,这可以带来更准确和相关的答案。

三、LangChain 模块

LangChain 提供了对几个主要模块的支持:

模型:LangChain 支持的各种模型类型和模型集成。

索引:当结合你自己的文本数据时,语言模型通常更加强大 - 这个模块涵盖了这样做的最佳实践。

:链不仅仅是一个单一的 LLM 调用,而是一系列的调用(无论是对 LLM 还是其他工具)。LangChain 提供了一个标准的链接口,许多与其他工具的集成,以及针对常见应用的端到端链。

四、设置环境

首先,我们需要安装所需的包并导入必要的库。

安装所需的包:

!pip install --upgrade langchain openai -q
!pip install unstructured -q
!pip install unstructured[local-inference] -q
!pip install detectron2@git+https://github.com/facebookresearch/detectron2.git@v0.6#egg=detectron2 -q
!apt-get install poppler-utils

导入必要的库:

import os
import openai
import pinecone
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain

五、加载文档

导入文档之前,请确保pillow <= 6.2.2,否则会抛出下面的异常:

ImportError: cannot import name 'is_directory' from 'PIL._util' (/usr/local/lib/python3.10/dist-packages/PIL/_util.py)

检查pillow的版本,重新安装6.2.2版本,安装完成后需要重启Colab Runtime环境。

!pip show pillow
!pip uninstall pillow 
!pip install --upgrade pillow==6.2.2 

首先,我们需要使用 LangChain 的 DirectoryLoader 从一个目录中加载文档。在这个例子中,我们假设文档存储在一个叫做 'data' 的目录中。

directory = '/content/data'

def load_docs(directory):
  loader = DirectoryLoader(directory)
  documents = loader.load()
  return documents

documents = load_docs(directory)
len(documents)

六、分割文档

现在,我们需要将文档分割成更小的块进行处理。我们将使用 LangChain 的 RecursiveCharacterTextSplitter,它默认尝试在字符 ["\n\n", "\n", " ", ""] 上进行分割。

def split_docs(documents, chunk_size=1000, chunk_overlap=20):
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
  docs = text_splitter.split_documents(documents)
  return docs

docs = split_docs(documents)
print(len(docs))

七、使用 OpenAI 嵌入文档

一旦文档被分割,我们需要使用 OpenAI 的语言模型来嵌入它们。首先,我们需要安装 tiktoken 库。

!pip install tiktoken -q

现在,我们可以使用 LangChain 的 OpenAIEmbeddings 类来嵌入文档。

import openai
from langchain.embeddings.openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")

query_result = embeddings.embed_query("记忆内存")
len(query_result)

八、使用 Pinecone 进行向量搜索

接下来,我们将使用 Pinecone 为我们的文档创建一个索引。首先,我们需要安装 pinecone-client。

!pip install pinecone-client -q

在初始化之前,我们需要在Pinecone控制台创建一个Index索引,Dimensions的值为我们前面计算的嵌入维度大小,这里为1536,具体需要根据你的实际计算结果来配置。

 然后,我们可以初始化 Pinecone 并创建一个 Pinecone 索引。

pinecone.init(
    api_key="pinecone api key",
    environment="env"
)

index_name = "langchain-demo"

index = Pinecone.from_documents(docs, embeddings, index_name=index_name)

我们使用方法创建了一个新的 Pinecone 向量索引。这个方法接受三个参数:Pinecone.from_documents()

1、docs: 一个由 RecursiveCharacterTextSplitter 分割成更小块的文档列表。这些更小的块将被索引到 Pinecone 中,以便以后更容易地搜索和检索相关的文档。

2、embeddings: OpenAIEmbeddings 类的一个实例,它负责使用 OpenAI 的语言模型将文本数据转换为嵌入(即数值表示)。这些嵌入将被存储在 Pinecone 索引中,并用于相似性搜索。

3、index_name: 一个表示 Pinecone 索引名称的字符串。这个名称用于在 Pinecone 的数据库中识别索引,并且应该是唯一的,以避免与其他索引冲突。

此方法用于处理输入文档,使用提供的 OpenAIEmbeddings 实例生成嵌入,并用指定的名称创建一个新的 Pinecone 索引。生成的索引对象可以执行相似性搜索,并根据用户查询检索相关的文档。Pinecone.from_documents()

九、查找相似的文档

现在,我们可以定义一个函数,根据给定的查询找到相似的文档。

def get_similiar_docs(query, k=2, score=False):
  if score:
    similar_docs = index.similarity_search_with_score(query, k=k)
  else:
    similar_docs = index.similarity_search(query, k=k)
  return similar_docs

查询结果

十、使用 LangChain 和 OpenAI LLM 进行问答

有了必要的组件,我们现在可以使用 LangChain 的 OpenAI 类和一个预构建的问答链来创建一个问答系统。

# model_name = "text-davinci-003"
# model_name = "gpt-3.5-turbo"
model_name = "gpt-4"
llm = OpenAI(model_name=model_name)

chain = load_qa_chain(llm, chain_type="stuff")

def get_answer(query):
  similar_docs = get_similiar_docs(query)
  answer = chain.run(input_documents=similar_docs, question=query)
  return answer

十一、示例查询和答案

最后,让我们用一些示例查询来测试我们的问答系统。

query = "如何安装LangChain?"
answer = get_answer(query)
print(answer)

query = "管理LLM的提示?"
answer = get_answer(query)
print(answer)

十二、结论

在这篇博客文章中,我们演示了如何使用 LangChainPinecone 构建一个基于文档的问答系统。通过利用语义搜索和大型语言模型,这种方法提供了一个强大而灵活的解决方案,用于从大量的文档中提取信息。你可以进一步定制这个系统,以适应你的特定需求或领域。

Google Colab Notebook:

https://github.com/Crossme0809/langchain-tutorials/blob/main/Langchain_Semnatic_Serach_Pinecone.ipynb

如果你对这篇文章感兴趣,而且你想要学习更多关于AI领域的实战技巧,可以关注「技术狂潮AI」公众号。立即获取:

  • 「ChatGPT超全资料汇总|总有一款是你需要的」
  • 「最完整的ChatGPT提示工程(含PPT|Xmind|视频|代码)」
  • 「最强ChatGPT工具集合|超1200+工具,58个分类」

您将找到丰富的资源和工具,帮助您深入了解和应用ChatGPT。

<think>好的,用户想了解如何使用LLMRAG技术构建虚拟教学系统。首先,我需要回忆RAG的基本原理,它结合了信息检索生成模型,对吧?根据引用[2][4],RAG的核心是先检索相关文档,再生成答案。那在虚拟教学系统中,应用这个技术的话,可能需要一个知识库,比如课程资料、教材等,作为检索的来源。 接下来,系统的架构可能需要几个模块:知识库构建、检索器、LLM集成、交互界面等。知识库方面,得考虑如何结构化存储教学资料,可能需要向量数据库来支持高效检索。然后,检索器需要将用户的问题转换为向量,进行相似度匹配,找到最相关的文档片段,这部分可以引用[4]提到的建立索引的过程。 然后是LLM的生成部分,如何将检索到的内容整合到提示中,让模型生成准确的回答。比如,当学生提问时,系统先检索相关知识点,再让LLM基于这些信息生成解释,这样避免模型产生幻觉,如引用[4]所说。同时,可能需要设计反馈机制,让学生可以纠正错误,帮助系统优化,这一点参考了引用[3]提到的Fine-tuning技术。 另外,个性化教学需要考虑学生的历史数据,可能需要用户画像模块,记录学习进度薄弱点,动态调整内容。引用[3]提到的垂直训练大模型,可能在这里用于针对特定学科优化模型表现。 最后,实现步骤需要分阶段:准备知识库、构建检索模块、集成LLM、开发交互界面、测试优化。还要注意数据安全隐私保护,确保学生信息不被泄露。可能遇到的挑战包括知识库的全面性、检索的准确性、生成答案的可理解性,这些都需要反复测试调整。 相关问题部分需要覆盖技术实现、优化、挑战应用场景,确保用户全面了解构建过程中的关键点。</think>### 如何构建基于LLMRAG的虚拟教学系统? #### 1. **系统核心架构设计** 虚拟教学系统的核心是通过RAG技术将教学知识库与LLM结合,实现智能问答、个性化教学动态内容生成。主要模块包括: - **知识库构建**:整合教材、课程讲义、习题解析等结构化或非结构化数据,通过向量化工具(如BERT、Sentence-BERT)转换为嵌入向量,并存入向量数据库(如FAISS、Pinecone)[^4]。 - **检索模块**:使用检索器(如BM25、DPR)从知识库中匹配用户问题的最相关片段。例如,学生提问“牛顿第一定律的公式是什么?”时,检索器会返回教材中对应的段落公式。 - **生成模块**:将检索到的信息与用户输入拼接为提示词,输入LLM(如GPT-4、Llama 2)生成自然语言回答。例如: ```python def generate_answer(question, retrieved_text): prompt = f"基于以下内容回答问题:{retrieved_text}\n问题:{question}" return llm.generate(prompt) ``` - **反馈与优化**:记录学生交互数据,通过微调(Fine-tuning)优化LLM的生成效果,如引用[3]提到的数据蒸馏模型部署方法[^3]。 #### 2. **关键技术实现步骤** 1. **知识库索引构建**: - 使用文本分块工具(如LangChain的TextSplitter)将教材分割为片段。 - 调用嵌入模型(如OpenAI的text-embedding-3-small)生成向量。 - 存储到向量数据库,支持高效相似性检索。 2. **检索增强生成流程**: - 用户输入问题后,系统将问题向量化,从知识库中检索Top-K相关片段。 - 设计提示模板,例如: ``` “你是一名教师,请根据以下知识回答问题: {检索到的内容} 问题:{用户输入}” ``` - 调用LLM生成答案,并通过温度参数(temperature)控制输出多样性。 3. **个性化教学功能**: - 构建学生画像,记录学习历史、错题记录、知识点掌握程度。 - 基于画像动态调整检索策略(例如优先检索薄弱知识点)生成风格(例如简化语言或增加例题)。 #### 3. **实际应用场景示例** - **智能答疑**:学生提问“如何证明勾股定理?”,系统检索几何教材中的证明步骤,生成分步解释并附加图形示例。 - **自适应测试**:根据学生历史表现,从题库中检索难度匹配的题目,由LLM生成变式题。 - **课程内容生成**:教师输入“生成一节关于量子力学的科普课大纲”,系统结合最新论文教材生成结构化内容。 #### 4. **挑战与优化方向** - **知识更新**:定期爬取学术网站(如arXiv)更新知识库,避免LLM生成过时内容。 - **幻觉控制**:在提示词中添加约束,如“仅基于检索内容回答,不确定时回复‘暂无信息’”。 - **性能优化**:使用量化技术压缩LLM模型,或采用RAG与微调结合的方式(如引用[3])提升响应速度。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术狂潮AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值