Read Time (二分

本文探讨了如何使用二分时间策略来有效地进行磁盘配对。通过分析最左边的磁盘与指针的配合,确定指针在限定时间内能到达的最右侧位置。当磁盘位于指针左侧时,需要比较先向左再向右走与直接向右走这两种路径,以找到最优解。若磁盘在指针右侧,则指针径直向右移动。这种方法确保了在有限的时间内完成磁盘配对。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二分时间,最左边的磁盘用最左边的指针去配对,并判断该指针在经过该磁盘的同时最多跑到最右边的位置,如果需要配对的磁盘在指针左边则有两种走法,第一种先向左走到磁盘位置再一直向右走,第二种先向右走然后向左走,正好在时间用完时停在磁盘处,判断两种情况哪种走的最右。如果磁盘在指针右边则一直向右走。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<string>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<iomanip>
#include<algorithm>
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define endl "\n"
#define int long long 

using namespace std;

const int INF = 1e18+5;
const int maxn = 1e5+5;
int a[maxn],b[maxn];
int m,n;
bool check(int mid){
	int t = 0;
	for( int i = 0 ;i < m ; ++i ){
		if(a[i]+mid < b
### 时间序列分类数据集用于二分类 对于时间序列分类中的二分类问题,存在多个适用的数据集。这些数据集通常来源于现实世界的应用场景,能够提供丰富的特征以便于分析和建模。 #### 1. UCR Time Series Classification Archive 数据集 UCR Time Series Classification Archive 提供了一系列可用于时间序列分类的任务,其中包括一些适合做二分类的时间序列数据集[^1]。例如: - **Beef vs Soya**: 此数据集中包含了牛肉与大豆两种食品的光谱反射率测量值,可以作为两个类别的代表来进行区分。 - **Coffee vs Tea**: 类似地,咖啡豆和茶叶的不同波长下的吸收特性也可以构成一个有效的二分类案例研究对象。 #### 2. PhysioNet Challenge Datasets PhysioNet Challenges 经常发布涉及医疗健康领域内的时间序列数据分析竞赛题目,其中不乏优秀的二分类任务实例。比如: - **Heartbeat BIDMC Congestive Heart Failure Database (CHFDB)**: 可以用来识别正常心电图(ECG)信号和平滑肌细胞活动之间的差异,形成两类不同的模式。 - **Sleep-EDF Expanded Dataset**: 包含睡眠期间脑电信号(EEG), 肌肉张力变化以及眼动记录等多种生理参数,有助于构建清醒状态vs浅睡期这样的二分法预测模型。 #### 3. MTS Data Repository 中的相关资源 MTS Data Repository 收录了许多多变量时间序列(Multivariate Time Series, MTS),部分也适用于简单的两类别划分情况。特别是那些经过精心挑选并标注清晰的小型数据集合,非常适合初学者练习或快速验证算法性能[^2]: - **WISDM Activity Recognition Dataset using Smartphones**: 用户通过智能手机传感器收集到的各种日常行为动作(步行、跑步等),可选取特定运动形式组成对立组别进行实验测试。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 加载 WISDM 数据集的一个子集为例展示如何准备二分类任务 data_path = 'path_to_wisdm_dataset.csv' df = pd.read_csv(data_path) # 假设只关心'walking'(行走) 和 'jogging'(慢跑)这两种活动类型 binary_df = df[df['activity'].isin(['walking', 'jogging'])] X = binary_df.drop(columns=['activity']) y = binary_df['activity'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值