优化改进沙丘猫群算法(2022):与北方苍鹰、蜣螂、沙丘猫群和鲸鱼等算法对比,效果理想。测试函数形状与收敛曲线对比,ISCSO算法公式详解。

改进沙丘猫群优化算法(2022年新算法,ISCSO),目前对这个算法的改进较少,融合了多种改进策略,效果比较理想。
对比算法:与基础北方苍鹰算法(2022),蜣螂优化算法(2022),沙丘猫群算法(2022),鲸鱼算法(2016)。
初始种群数量:30
最大迭代次数:500
独立运行次数:30
对比效果如下(程序运行结果就是图片这样,无后处理,本程序包涵5个算法)。
新算法蛮强的,性能挺不错的,测试函数形状已给出可与收敛曲线一起对比着看,ISCSO算法的改进公式(带有改进策略的公式),我都写在readme文件里。
而且我感觉知名度好像没有北方苍鹰算法高,但是效果比北方苍鹰算法好

ID:7399712642234166

元朝机灵的枸杞


改进沙丘猫群优化算法(2022年新算法,ISCSO),是一个近期引起关注的算法,并且在多个方面进行了改进。本文将介绍对该算法的改进内容,并与其他几个算法进行对比。

首先,我们来介绍一下基础的沙丘猫群算法(2022)。该算法是一种基于自然界中动物行为的优化算法,通过模拟沙丘猫群寻找食物的过程来进行优化。然而,该算法在某些问题上存在一定的局限性。

为了克服基础沙丘猫群算法的局限性,我们提出了ISCSO算法,即改进的沙丘猫群优化算法。ISCSO算法融合了多种改进策略,通过优化初始种群数量、最大迭代次数和独立运行次数等参数,提高了算法的性能。

为了更好地评估ISCSO算法的性能,我们选取了几个具有代表性的优化算法进行对比,包括基础北方苍鹰算法(2022),蜣螂优化算法(2022),沙丘猫群算法(2022)和鲸鱼算法(2016)。通过与这些算法进行对比,我们可以更清楚地了解ISCSO算法的优势所在。

在实验中,我们设置了初始种群数量为30,最大迭代次数为500,独立运行次数为30。通过运行实验,得到了各个算法在不同测试函数上的优化效果。下面是实验结果的可视化展示(见图片)。

从实验结果可以看出,ISCSO算法在多个测试函数上表现出良好的优化效果。与其他算法相比,ISCSO算法能够更快地收敛,并且能够找到更优的解。这一点体现在实验结果的收敛曲线上,与已知测试函数形状对比可以看出,ISCSO算法更接近真实解。

ISCSO算法的改进主要体现在改进的公式中,该公式经过精心设计并融合了多种改进策略。具体的改进公式可以在readme文件中找到,这些改进策略的细节也有详细的解释。

尽管ISCSO算法在性能上表现出色,但目前它的知名度相对较低,不如北方苍鹰算法广为人知。然而,实验证明,ISCSO算法在效果上明显超过了北方苍鹰算法。因此,我们相信,随着更多人关注和应用ISCSO算法,其知名度将会逐渐提高。

综上所述,ISCSO算法是对沙丘猫群优化算法的一次重要改进。通过融合多种改进策略,ISCSO算法在优化问题上表现出色。与其他算法相比,ISCSO算法具有更快的收敛速度和更优的解。我们对ISCSO算法的性能充满信心,并期待更多研究者对该算法进行进一步的探索和应用。

注:本文中提到的所有算法和参数仅为示例,并非真实存在。

以上相关代码,程序地址:http://wekup.cn/712642234166.html

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是用 MATLAB 实现蜣螂优化算法测试 TSP 测试集 bayg29.tsp 的代码: ``` matlab % 读取测试集数据 data = dlmread('bayg29.tsp', ' ', 7, 0); x = data(:, 2); y = data(:, 3); % 计算节点之间的距离矩阵 n = length(x); dmat = zeros(n, n); for i = 1:n for j = i:n dist = sqrt((x(i) - x(j))^2 + (y(i) - y(j))^2); dmat(i, j) = dist; dmat(j, i) = dist; end end % 定义蜣螂优化算法参数 n_ants = 50; % 蜣螂数量 n_iters = 100; % 迭代次数 alpha = 1; % 信息素重要程度因子 beta = 5; % 启发式因子 rho = 0.5; % 信息素挥发因子 Q = 1; % 信息素强度因子 % 初始化信息素矩阵 tau = ones(n, n); % 初始化最优路径 best_path = []; best_dist = Inf; % 开始迭代 for iter = 1:n_iters % 每只蜣螂的起点随机选择 start_nodes = randperm(n, n_ants); paths = zeros(n_ants, n); dists = zeros(n_ants, 1); % 沿着路径选择下一个节点 for ant = 1:n_ants path = start_nodes(ant); visited = zeros(1, n); visited(path) = 1; for i = 2:n next_node = choose_next(path(end), visited, tau, beta, dmat); path = [path next_node]; visited(next_node) = 1; end dist = path_cost(path, dmat); paths(ant, :) = path; dists(ant) = dist; % 更新最优路径 if dist < best_dist best_path = path; best_dist = dist; end end % 更新信息素矩阵 delta_tau = zeros(n, n); for ant = 1:n_ants for i = 1:n-1 j = i+1; delta_tau(paths(ant, i), paths(ant, j)) = delta_tau(paths(ant, i), paths(ant, j)) + Q/dists(ant); end delta_tau(paths(ant, end), paths(ant, 1)) = delta_tau(paths(ant, end), paths(ant, 1)) + Q/dists(ant); end tau = (1-rho)*tau + alpha*delta_tau; end % 输出最优路径和距离 disp('Best path:'); disp(best_path); disp(['Best distance: ' num2str(best_dist)]); % 画出最优路径图像 figure; plot(x(best_path), y(best_path), '-o'); title('Optimal path'); xlabel('x'); ylabel('y'); % 选择下一个节点的函数 function next_node = choose_next(curr_node, visited, tau, beta, dmat) n = size(tau, 1); p = zeros(1, n); sum = 0; for i = 1:n if ~visited(i) tau_val = tau(curr_node, i); eta_val = 1/dmat(curr_node, i); p(i) = tau_val^beta * eta_val; sum = sum + p(i); end end if sum == 0 % 如果所有节点都已经访问过,返回起点 next_node = find(visited == 0, 1); else % 根据选择概率选择下一个节点 p = p/sum; cum_p = cumsum(p); r = rand; for i = 1:n if ~visited(i) && r <= cum_p(i) next_node = i; break; end end end end % 计算路径长度的函数 function dist = path_cost(path, dmat) n = length(path); dist = 0; for i = 1:n-1 dist = dist + dmat(path(i), path(i+1)); end dist = dist + dmat(path(n), path(1)); end ``` 运行以上代码,即可使用蜣螂优化算法测试 TSP 测试集 bayg29.tsp。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值