继续 上节介绍的 MNIST手写数字识别的例子,本节将对 DISTRIBUTIONS(数据分布)和 HISTOGRAMS(直方图〉这两个选项卡(两个监控指标)进行介绍,实际上它们也没有什么过于复杂的地方。对于 DISTRIBUTIONS 选项卡, TensorFlow 并没有在 summar.py 中 提供 distribution()函数来汇总分布数据,该选项卡中的数据来源于 summar. histogram()函数汇总的结果:也就是说, DISTRIBUTIONS 选项卡和 HISTOGRAMS 选项卡中的数据相同,只是可视化的形式不同。下图展示了 DISTRIBUIONS 选项卡的可视化结果,从中可以看到之前在程序中记录的各个神经网络层输出的分布,包括在激活函数前的结 果以及在激活函数后的结果。以 layer_1 的 per_activations 为例,下图展示了其放大之后的结果。
也可以将 DISTRIBUTIONS 选项卡中可视化数据的形式转换为直方图的形式。在该选项卡的右侧是 HISTOGRAMS 选项卡,这里展示的就是转 换为直方图后的结果,如下图所示。还是以layer_1的 per_activations 为例,下图展示了其放大之后的结果。在下图中,将光标停放在直方图的顶点,就会展示在该点的数据值以及坐标值,非常方便。