如何使用Ollama在本地部署大模型

本文主要介绍以下3方面内容 

  • 在Windows电脑上使用Ollama部署大模型 

  • 使用API与Ollama运行的模型交互 

  • 使用可视化界面(Open WebUI)与Ollama运行的模型交互实现类似ChatGPT效果

一 Ollama与模型安装 

1 Ollama安装

Ollama 是一个开源的大型语言模型服务工具,它允许用户在自己的硬件环境中轻松部署和使用大规模预训练模型

下载地址:https://ollama.com/download

下载后是一个OllamaSetup.exe可执行文件,一路Next直接安装即可。

Tips:如无法下载,后台回复【学习群】,入群获取安装包。

2 环境变量设置

Ollama安装在C盘,后续下载的模型文件默认也是在C盘,可以通过设置环境变量更改模型文件的存储位置,环境变量名:OLLAMA_MODELS

<think>好的,用户想了解如何在本地部署Ollama大模型,需要指令教程。首先,我需要回顾之前提供的引用内容,尤其是引用[2]和[3],里面有详细的命令列表和步骤。用户可能已经安装了Ollama,但需要具体的部署步骤,包括安装后的命令使用、拉取模型、运行模型等。 首先,我得确保回答结构清晰,分步骤说明。可能需要从安装开始,虽然用户提到的是部署,但假设他们已经安装好了,所以重点放在部署后的命令。引用[1]提到ollama list、pull、run等命令,这些是关键步骤。 然后,用户可能需要知道如何自定义模型,比如修改系统提示词或参数。引用[4]中的Modelfile示例很重要,需要解释如何创建和使用自定义配置。要提到FROM指令指定基础模型,SYSTEM设置提示词,PARAMETER调整温度等参数。 还需要考虑用户可能遇到的问题,比如如何找到可用模型,如何管理本地模型列表。引用[3]中的ollama list和ps命令需要说明,以及如何通过pull获取新模型。 此外,常见问题如模型下载慢可能需要给出换源的解决方案,比如设置环境变量。这部分在引用中没有提到,但根据经验,用户可能遇到,所以可以补充。 最后,生成相关问题时要围绕部署步骤、命令使用、自定义配置和问题排查,确保覆盖用户可能的后续疑问。比如如何创建自定义模型,优化部署,解决网络问题等。 总结回答结构:安装步骤、常用命令详解、自定义模型方法、注意事项及问题排查。确保每个部分都有引用支持,并自然添加引用标记。同时保持语言简洁,步骤明确,帮助用户逐步完成部署。</think>### Ollama大模型本地部署指令教程 根据引用内容整理,本地部署Ollama大模型的核心步骤如下: #### 一、基础部署流程 1. **安装与启动** - 安装完成后验证命令可用性: ```bash ollama --version # 查看版本 ollama serve # 启动服务[^3] ``` 2. **模型管理** - 拉取预训练模型(以中文Llama2为例): ```bash ollama pull llama2-chinese:13b # 从仓库下载模型[^3] ``` - 查看本地模型列表: ```bash ollama list # 显示已下载模型[^1] ``` 3. **运行模型** ```bash ollama run llama2-chinese:13b # 启动交互式对话[^3] ``` #### 二、自定义模型配置 通过`Modelfile`实现个性化设置(示例): ```dockerfile FROM llama2-chinese:13b # 基础模型 SYSTEM "以学术论文风格回答" # 定义角色设定 PARAMETER temperature 0.3 # 调整生成随机性[^4] ``` 创建自定义模型: ```bash ollama create my-model -f ./Modelfile # 构建新模型[^2] ``` #### 三、高级操作 1. **模型维护** ```bash ollama cp my-model backup-model # 复制模型[^3] ollama rm llama2-chinese:7b # 删除旧版本[^1] ``` 2. **进程监控** ```bash ollama ps # 查看运行中的模型实例[^2] ``` #### 四、注意事项 1. 首次运行`ollama run`会自动下载缺失模型 2. 模型下载速度慢时可尝试: ```bash export OLLAMA_HOST=mirror.example.com # 设置镜像源 ``` 3. 自定义模型需遵循`FROM`->`SYSTEM`->`PARAMETER`的编写顺序[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值