1 signal.medfilt(volume, kernel_size)函数参数
volume:N维输入数组
kernel_size:一个标量或N长度列表,代表每个维度中滤波窗口的大小(奇数),默认值为3。
2 signal.medfilt()函数作用
当kernel_size=a时,输入数据中每个点自己和左右各b个点成为一个窗口,满足b+1+b=a。在每个窗口中选取数据中位数并把该数放在原点的位置上,需要注意的是如果原点的左右没有元素那么一律以0补齐。medfilt()函数的作用是消除原数据(图像or时序数据)中的噪声。
以[4 2 7]为例,当kernel_size=3时,第一个窗口是[0 4 2],选取数据中位数2并把该数放在原点的位置上;第二个窗口是[4 2 7],选取数据中位数4并把该数放在原点的位置上;第三个窗口是[2 7 0],选取数据中位数2并把该数放在原点的位置上。因此最后得到的数据是[2 4 2]。
import scipy.signal as signal
a=[4,2,7]
b=signal.medfilt(a,3) #一维中值滤波
print(b)
#Out:[2 4 2]
3 medfilt()函数消除时序数据的噪声
import scipy.signal as signal
import matplotlib.pyplot as plt
import numpy as np
a=np.sin(np.linspace(0, 10, 20))+np.random.rand(20)
b=signal.medfilt(a, 3)
plt.figure()
plt.plot(a, '-o')
plt.plot(b, '--')
plt.show()
通过图像可知,经过中值滤波的黄色虚线明显消除了原数据的一些噪声。
3 medfilt()函数消除图像的噪声