- 博客(118)
- 收藏
- 关注
原创 assert
Pythonassert 语句,又称断言语句,可以看做是功能缩小版的 if 语句,它用于判断某个表达式的值,如果值为真,则程序可以继续往下执行;反之,Python 解释器会报 AssertionError 错误。assert 语句的语法结构为:assert expression [, arguments]如果expression [, arguments]为True,程序继续执行,否则,程序报...
2022-05-25 09:08:13
281
原创 BatchNormalization
keras.layers.BatchNormalization(axis=-1)批量标准化层 。在每一个批次的数据中标准化前一层的激活项, 即,应用一个维持激活项平均值接近 0,标准差接近 1 的转换。参数axis: 整数,需要标准化的轴 (通常是特征轴)。 例如,在data_format="channels_first"的Conv2D层之后, 在BatchNormalization中设置axis=1。输入尺寸可以是任意的。输出尺寸与输入相同。...
2022-05-24 21:45:15
812
原创 Layers>Lambda层
Lambda层可以对输入数据进行任意数学表达式function计算,并将计算结果输出输入尺寸任意。在使用 TensorFlow 时,推理可以得到输出尺寸。keras.layers.Lambda(function)# function:需要封装的函数 #Output.shape = (batch_size,input_dim, window_width) a = Lambda(lambda x: K.mean(x, axis=1))(a) #Output.shape =
2022-05-20 21:54:43
1066
原创 Layers>Reshape层
Reshape层用来将输入shape转换为特定的shape参数target_shape:目标shape,为整数的tuple,不包含样本数目的维度(batch_size)输入shape任意,但输入的shape必须固定。当使用该层为模型首层时,需要指定input_shape参数输出shape(batch_size,)+target_shape例子# as first layer in a Sequential modelmodel = Sequential()model.ad
2022-05-20 18:06:26
578
原创 Layers>Permute层
Permute(dims)置换输入的维度。dims: 整数元组。索引从 1 开始。 例如, (2, 1) 置换输入的第一和第二个维度。a = Permute((2, 1))(inputs)# 若input_shape=(10, 64),则现在output_shape == (None, 64, 10)# 注意: `None` 是批表示的维度经过Permute输出尺寸与输入尺寸相同,但是维度根据dims重新排列......
2022-05-19 22:09:07
447
原创 clock时钟的decimation
clock:提供仿真时间Clock模块可以在窗口中显示每一步仿真当时的仿真时间。Display time:勾选后可以在在仿真过程中显示当前仿真时间,如果不显示,则可将其输人到工作区中。Decimation:时间更新获取的增量,可以是任意正整数, 默认为10则表示系统将以1s、2s、3s…10s依次递增。...
2022-05-16 10:51:33
7474
2
原创 如何查看matlab 计算时间
tic/toc(单位s): tic用在程序的开始,作用是启动一个计时器,然后在程序尾部放一个toc,表示终止计时器,例如:tic;timett=toc;查看工作区timett值确定tic启动以来的matlab 计算时间
2022-05-09 15:44:37
1895
原创 matlab中interp1
插值函数。该函数对数据点之间计算内插值,它找出在中间点的数值,yi=interp1(x,Y,xi):返回一元函数f(x)中xi对应的插值向量yi,其中函数表达式f(x)由所给数据x,Y决定。
2022-05-05 17:18:18
9437
原创 matlab画图
set(gca, ...) 改变坐标轴的外观,如字体、字号、颜色如set(gca,'fontsize',14),令字体大小为14
2022-05-02 22:28:44
516
原创 低通滤波器
低通滤波器:通低频,阻高频。可去掉高频干扰(上升下降越快表示频率越高),使不平滑的信号变平滑(随时间变化很小的信号即低频信号)。低通滤波器 平滑滤波器
2022-04-27 20:21:10
3230
原创 采样率sampling rate
采样率(采样频率)定义了每秒从连续信号采样的离散信号个数,它用赫兹(Hz)来表示。采样频率的倒数叫作采样时间,它是采样之间的时间间隔。比如说采样率4HZ,表示每秒采样4个信号,每个信号间隔0.25s。...
2022-04-27 19:27:59
2817
原创 simulink仿真提示S函数不存在
把.slx文件和.m文件都放在一个文件夹“a”下方法1:https://jingyan.baidu.com/article/335530da43165c58cb41c3cd.html方法2:将文件夹改成文件夹“a”
2022-04-23 21:57:10
5292
原创 matlab中eye函数、ones函数
eye函数创建对角元素为1,其他元素为0的矩阵。eye(3)生成一个3行3列对角元素为1,其他元素为0的矩阵:;eye(3,4)生成一个3行4列对角元素为1,其他元素为0的矩阵:
2022-04-16 22:03:49
8347
原创 matlab中global
global用于声明全局变量。语法格式:global X Y Z。表示声明X、Y、Z为全局变量。 通常,在MATLAB中,每个函数都有属于它自己的局部变量,这些局部变量不能被与该函数处于同一个等级上的函数访问。通过global来定义全局变量可以让这些函数共享这个全局变量。而且定义的全局变量在内存中也只有一份, 在一个函数中修改, 在另外一个函数中的值也会发生变化。...
2022-04-16 21:41:07
11939
原创 simulink中MUX
MUX:是将多路信号集成一束,这一束信号在模型中传递和处理中都看做是一个整体。(Mux实际上代表多路信号。)与Mux 配套的是Demux ,它将各路信号相互分离以便能对各信号进行单独处理。 请看下面这个例子。...
2022-04-16 20:45:27
9580
原创 状态方程离散化处理
连续状态空间方程:1欧拉法1.1 状态方程将代入状态方程得化简为1.2 输出方程输出方程为将表达式代入上式得1.3离散化后的状态空间方程其实欧拉法属于不精准的离散化。2 公式法2.1 状态方程的离散公式为,其中,,即2.2 输出方程...
2022-04-14 22:11:36
5917
原创 激活函数function
1 sigmoid激活函数作用:输出归一化,即输出在0-1之间import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-10,10,100)y = 1.0 / (1 + np.exp(-x))plt.figure()plt.plot(x, y, )plt.title("sigmoid")plt.xlabel("np")plt.ylabel("sigmoid")plt.show()举个例子..
2022-04-11 20:34:34
581
原创 python画分段函数
import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-10, 10, 100)y = [i if (i>0) else 0 for i in x]plt.figure()plt.plot(x, y)plt.title("relu")plt.xlabel("np")plt.ylabel("relu")plt.show()
2022-04-11 15:49:53
3917
原创 充电电流1C的含义
定义2C充电电流的2表示电流速率,2C=充放电电流/额定容量,即速率*额定容量=电流。电流速率的倒数是充电时间,因此电池充电电流1C、2C、0.2C可以表示充放电快慢。举例某只电池标称容量1200mAh,0.2C放电电流为240mA(充电时间5h),1C表示1200mA(充电时间1h)。某只电池标称容量1000mAh,1C充电电流为1000mA(充电时间1h),0.5C表示500mA(充电时间2h)。某只电池标称容量1800mAh,0.5C放电电流为900mA(充电时间2h)。..
2022-04-01 11:49:43
26001
原创 RC并联电路
1电容充放电细节电容是由一对普通的金属平板对组成的,假设上极板有四对正负电荷的粒子对。然后,突然在该电容两端加一个电源。由于电源正极带正电,电源正极成功吸引了两个上极板上的电子过去(此时上极板有两个正电荷)。当电源正极还想吸电子,这时候上极板上的正电荷粒子带正电和电源正极一样也有吸引自由电子的能力,两边的吸引力相等的时候,电源正极不再有能力吸引更多的自由电子过去了,这时候达到一个平衡。最后,电源正极吸引来的电子会再被搬运到电源负极(由于电源作用)。所以,达到平衡后,电容两个极板电荷的分布如下图(假设下极
2022-03-30 21:36:31
13561
2
原创 The diffence between SOC and DOD
State of Charge(SOC)the proportion of the charge available at this point,compared to the total charge available which uesd in the chagring.Death of Discharge(DOD) is the charge removed from the total charge available which unit is amper-hour(Ah) used in
2022-03-29 11:59:15
374
原创 round( )函数:四舍五入
round(x,n)x:待处理的数据n:保留小数点后n位返回值:数据x的四舍五入值print(round(3.6273639,4))#Out:3.6274需要注意的,在机器语言中浮点数不一定能精确表达,因为数据换算成一串1和0后可能是无限位数的,机器会做出截断处理。比如说在机器中保留的2.355可能要比实际数字大一点点,因此实际数据保留三位就成为了2.35。print(round(2.355,2))#Out:2.35...
2022-03-24 16:41:06
1354
原创 print格式化输出
1 字符串与变量用逗号连接,依次输出内容age=23print("我的年龄是:",age)#Out:我的年龄是: 232 字符串与变量用%操作符连接%可以将一个变量插入字符串中生成新字符串,变量放在字符串后面的%后面age=23print("我的年龄是:%d"%age)#Out:我的年龄是: 23另外,这种操作可以同时将多个变量放进字符串,只需要在字符串中加入多个%,同时用括号把多个变量括起来。age=23weight=100.2print("我的年龄和体重分别是:
2022-03-24 11:55:39
2127
原创 metrics误差函数(sklearn库)
1 MSE(均方误差)MSE=metrics.mean_squared_error(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)y_true:真实值;y_pred:预测值;sample_weight:权值默认为1;multioutput:默认为’uniform_average’,即计算所有元素的均方误差,返回为一个标量。均方误差是指n个预测数据y和真实数据x对应点误差的平方和的均值,因此MSE公
2022-03-22 22:03:53
10952
1
原创 LSTM层
1 常见参数model.add(LSTM(units, #输出的大小(神经元个数) activation=None, #激活函数 use_bias=True, #是否添加偏置 kernel_initializer='glorot_uniform', #权重矩阵初始化 bias_initializer='zeros', #偏置初始化 kernel
2022-03-22 14:14:59
3311
原创 df.reset_index( )函数(Pandas库)
df.reset_index( )函数:重置索引直接生成一个新DataFrame或Seriesdf.reset_index(level, drop=False)level:drop:默认为False,即原来的行索引列会作为新的一列。如果drop=True,则原来的行索引列被弃1 df.reset_index(drop=False):将原来的行索引列作为新的一列,生成一个新dfimport pandas as pddf =pd.DataFrame({'a':[0,1,2],'b':[
2022-03-21 16:26:52
15763
原创 gaussian_filter( )函数(高斯滤波)
对一个数进行高斯滤波(模糊)可以理解成将该数取附近矩形窗口所有值的加权平均值,距离处理数越近的点权重越大,距离处理点越远的点权重越小。因此如果取的矩形窗口越大,那么对处理点的模糊效果越强烈。上图,对数值2进行高斯滤波(模糊),取该数附近3×3阶矩形窗口(左图)。如果待处理点2直接取周围点的平均值,就会变成1(右图)。在数值上,这是一种平滑化,在图形上,就相当于产生模糊效果,让中间点失去细节。因为数值和图像都是连续的,越靠近待处理点的点关系越密切,越远离待处理点的点关系越疏远,像上图那样直接使用简
2022-03-19 18:09:42
18250
原创 signal.medfilt( )函数(中值滤波)
1 signal.medfilt(volume, kernel_size)函数参数volume:N维输入数组kernel_size:一个标量或N长度列表,代表每个维度中滤波窗口的大小(奇数),默认值为3。2 signal.medfilt()函数作用当kernel_size=a时,输入数据中每个点自己和左右各b个点成为一个窗口,满足b+1+b=a。在每个窗口中选取数据中位数并把该数放在原点的位置上,需要注意的是如果原点的左右没有元素那么一律以0补齐。medfilt()函数的作用是消除原数据(图
2022-03-17 21:10:39
3083
原创 plt.函数
1 plt.figure( ) 函数:创建画布2 plt.plot(x, y, format_string, label="图例名"):绘制点和线, 并控制样式。其中x是x轴数据,y是y轴数据,xy一般是列表和数组。format_string 是字符串的格式包括线条颜色、点类型、线类型三个部分。向参数label传入图例名,使用plt.legend( )创建图例。2.1 画一条含x、y的线条import matplotlib.pyplot as pltx = [1, 2, 3, 4]y
2022-03-17 21:01:30
12885
原创 np.sin( )函数 (Numpy库)
np.sin(a)函数:对a中元素取正弦值。a可以是ndarray数据也可以是单个数据。当a是单个数据时,np.sin(a)返回一个数据。import numpy as npx=np.sin(np.pi/2)print(x)#Out: 1.0当a是ndarray数据时,np.sin(a)返回一个ndarray。import numpy as npx=np.sin(np.array([0,np.pi/2,np.pi]))print(x)#Out:[0.0000000e+00 1
2022-03-17 17:06:10
20126
原创 np.linspace( )函数:固定个数等差数据(Numpy库)
np.linspace(起点,终点,固定个数):该函数返回一个有终点和起点的固定个数的ndarray(闭区间)np.linspace(a,b):a为终点,b为起点,个数取默认值50np.linspace(a,b,c):a为终点,b为起点,c为个数...
2022-03-17 16:22:26
2228
原创 SettingWithCopyWarning:A value is trying to be set on a copy of a slice from a DataFrame(Pandas库)
pandas警告SettingWithCopyWarning: A value is trying to ...原理和解决方案_Lucky0928的博客-CSDN博客以下内容仅对上述文章进行一个学习记录。SettingWithCopyWarning 是一个警告 Warning,而不是错误 Error。要了解 SettingWithCopyWarning,首先要知道,Pandas 中的某些操作会返回数据的视图(View),某些操作会返回数据的副本(Copy)左侧的..
2022-03-16 14:23:52
20774
1
原创 每日小贴士
2022.3.15提取变量重构(ctrl+alt+V)print(complex_number.real_part())选中变量进行变量重构,得到下述代码part = complex_number.real_part()print(part)
2022-03-15 10:15:31
138
原创 数据结构5 :DataFrame(Pandas库)
series是一个一维的列数据,其中每一个元素都有一个标签。import pandas as pd s = pd.Series([2, 4, 6, 8]) print(s) 结果为,2468为一组列数据,左边的0123是数据的对应标签。
2022-03-14 22:07:04
49087
原创 np.arange( )函数:固定步长等差数据(Numpy库)
np.arange( )函数返回一个有终点和起点的固定步长的ndarray(左到右不到)np.arange(a):a为终点,起点取默认值0,步长取默认值1np.arange(a,b):a为终点,b为起点,步长取默认值1np.arange(a,b,c):a为终点,b为起点,c为步长...
2022-03-14 17:59:27
2952
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅