Leetcode 213. 打家劫舍 II

本题链接

题目

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 3:

输入:nums = [0]
输出:0

提示:

1 <= nums.length <= 100
0 <= nums[i] <= 1000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


思路

198. 打家劫舍 几乎相同。这个题的限制无非就是:如果打了第一家,就不能打最后一家;如果打了最后一家,就不能打第一家。分成两种情况求解即可:

  • 把第一家去掉,剩下的数组中求最优解
  • 把最后一家去掉,剩下的数组中求最优解

两种情况中的较大值就是答案。

空间复杂度可以降到 O ( 1 ) O(1) O(1),因为转移方程只和前两个元素相关。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

C++ 代码

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.empty())
            return 0;
        if (nums.size() == 1)
            return nums[0];
        if (nums.size() == 2)
            return max(nums[0], nums[1]);

        vector<int> dpStartFirst(nums.size() - 1);
        dpStartFirst[0] = nums[0];
        dpStartFirst[1] = max(nums[0], nums[1]);
        for (int i = 2; i < dpStartFirst.size(); ++i) {
            dpStartFirst[i] = max(dpStartFirst[i - 2] + nums[i], dpStartFirst[i - 1]);
        }
        vector<int> dpStartSecond(nums.size() - 1);
        dpStartSecond[0] = nums[1];
        dpStartSecond[1] = max(nums[1], nums[2]);
        for (int i = 2; i < dpStartSecond.size(); ++i) {
            dpStartSecond[i] = max(dpStartSecond[i - 2] + nums[i + 1], dpStartSecond[i - 1]);
        }
        return max(dpStartFirst.back(), dpStartSecond.back());
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值