题目
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [0]
输出:0
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
和 198. 打家劫舍 几乎相同。这个题的限制无非就是:如果打了第一家,就不能打最后一家;如果打了最后一家,就不能打第一家。分成两种情况求解即可:
- 把第一家去掉,剩下的数组中求最优解
- 把最后一家去掉,剩下的数组中求最优解
两种情况中的较大值就是答案。
空间复杂度可以降到 O ( 1 ) O(1) O(1),因为转移方程只和前两个元素相关。
时间复杂度:
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
n
)
O(n)
O(n)
C++ 代码
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.empty())
return 0;
if (nums.size() == 1)
return nums[0];
if (nums.size() == 2)
return max(nums[0], nums[1]);
vector<int> dpStartFirst(nums.size() - 1);
dpStartFirst[0] = nums[0];
dpStartFirst[1] = max(nums[0], nums[1]);
for (int i = 2; i < dpStartFirst.size(); ++i) {
dpStartFirst[i] = max(dpStartFirst[i - 2] + nums[i], dpStartFirst[i - 1]);
}
vector<int> dpStartSecond(nums.size() - 1);
dpStartSecond[0] = nums[1];
dpStartSecond[1] = max(nums[1], nums[2]);
for (int i = 2; i < dpStartSecond.size(); ++i) {
dpStartSecond[i] = max(dpStartSecond[i - 2] + nums[i + 1], dpStartSecond[i - 1]);
}
return max(dpStartFirst.back(), dpStartSecond.back());
}
};