Efficient Decision-based Black-box Adversarial Attacks on Face Recognition针对人脸识别系统的高效黑盒对抗攻击算法

本文探讨了针对人脸识别系统的黑盒对抗攻击,特别是决策边界的利用。提出了一种新的搜索算法,通过进化算法思想提高攻击效率。该算法在高维搜索空间中采用随机坐标采样和维度降采样策略,对人脸识别模型进行Dodging和Impersonation攻击,实验结果显示,提出的算法在相同查询次数下产生的对抗噪声远小于其他方法,验证了其高效性。
摘要由CSDN通过智能技术生成

背景

在图 1 示例中,我们用同样的一个人脸识别模型(Arcface [1])对两幅看起来一模一样的人脸图像进行识别,但是得到了完全不同的两个识别结果。这是为什么呢?原因是右图的人脸区域被加上了人眼无法察觉的恶意噪声,专门用于欺骗人脸识别模型。这种现象叫做对抗样本,即针对某种特定的模型(例如图像分类模型 ResNet [2]),在正常样本(例如 2D 图像,3D 点云等)上加入微小的噪声,使得模型原来的结果发生改变。

在这里插入图片描述
▲ 图1. 对抗样本示例:(左)正常人脸图像;(右)对抗人脸图像。

以上图像来自于视频:https://www.youtube.com/watch?v=d7hZ1VhfygU&t=76s

对抗样本现象揭示了机器学习模型尤其是深度学习模型的安全漏洞,近年来引起了学术界和工业界的广泛关注。研究人员已经开发了针对深度学习模型的诸多对抗攻击算法,最常见的例如 FGSM [3], PGD [4], C&W [5] 等。但是,这些方法都要求获取被攻击模型的全部结构和参数,这种攻击场景被称作白盒攻击。

但是在现实场景下,攻击者是很难获取被攻击模型的参数甚至结构的,只能够获取被攻击模型的输入结果。这种攻击场景被称为黑盒攻击。根据所获取模型输出的类型,又可细分为1)基于分数的黑盒攻击,即能够获取模型输出的后验概率或者分数(例如人脸比对的相似度分数),2)基于决策的黑盒攻击,即只能获取模型输出的离散类别。很显然,离散类别提供的关于模型的信息更少,基于决策的黑盒攻击难度也最大。相对于白盒攻击算法,基于决策的黑盒攻击算法非常少,而且攻击效率不高。

针对这个难题,我们提出了一种新的搜索算法,充分利用了模型决策边界的几何结构和进化算法思想 [6],大大提高了攻击效率。

针对人脸比对模型的攻击问题建模

我们将人脸比对模型表示为,其中;表示参考人脸图像,x 表示目标人脸图像;的作用是判断 x 和 是否为同一个人,如果相同,则返回 1,否则返回 0。

我们的攻击任务是在目标人脸图像 x 的基础上构造一个对抗人脸图像 ,使得其与参考人脸图像 的比对结

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值