batch size 代码

该博客展示了使用PyTorch训练模型的基本步骤:将numpy数组转换为Tensor,创建TensorDataset和DataLoader,设置训练循环,进行前向传播、损失计算、反向传播和优化器更新。代码示例中涉及了数据加载、模型训练和权重保存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 假设已经有了一组numpy 数组;此处框架为PyTorch
x=np.ones((10000,3))
x=torch.Tensor(x).float()
dataset=TensorDataset(x)
dataloader=DataLoader(dataset, batch_size=50,shuffle=True,num_workers=0, drop_last=True)
#。。。
epochs=500
for epoch in range(epochs):
	for batch_idx, data in enumerate (dataloader):
		net.zero_grap()
		data=torch.tensor([item.cpu().detach().numpy() for item in data]).cuda()
        data=data.to(torch.device("cuda"))
		loss=my_criterion(data)
		loss.backward()
		optimizer.step()
		#...
		if batch_idx %100==0:
			torch.save(net.state_dict(),path+“_epoch”+str(epoch)+"myy.pt")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值