ptrade从零开始学习量化交易第28期【ptrade获取市场信息之get_cb_list-获取可转债市场代码表】

获取市场信息

更加详细的调用方法,后续会慢慢整理。

也可找寻博主历史文章,搜索关键词使用方案,比如本文涉及函数get_cb_list!

感谢关注,咨询免费开通量化回测与获取实盘权限,欢迎和博主联系!

get_cb_list-获取可转债市场代码表

get_cb_list()
使用场景

该函数仅在交易模块可用

接口说明

返回当前可转债市场的所有代码列表(包含停牌代码)。

注意事项:

为减小对行情服务压力,该函数在交易模块中同一分钟内多次调用返回当前分钟首次查询的缓存数据。

参数

返回

返回当前可转债市场的所有代码列表(包含停牌代码)(list)。失败则返回空列表[]。

示例

def initialize(context):
    g.security = "600570.SS"
    set_universe(g.security)
    run_daily(context, get_trade_cb_list, "9:25")


def before_trading_start(context, data):
    # 每日清空,避免取到昨日市场代码表
    g.trade_cb_list = []


def handle_data(context, data):
    pass


# 获取当天可交易的可转债代码列表
def get_trade_cb_list(context):
    cb_list = get_cb_list()
    cb_snapshot 
### 关于 ptrade 量化交易平台的学习资源 对于希望深入了解 `ptrade` 平台并从零开始学习的用户来说,获取系统的教程是非常重要的。特别针对第二教程的需求,在现有的资料基础上[^1],可以推测该系列课程会逐步深入讲解基础概念到实际应用。 #### 初步了解 ptrade 的特点与优势 通常情况下,入门级的教学视频或文档会在初阶段详细介绍平台的核心功能以及如何设置账户和环境配置。这有助于新手快速熟悉操作界面及其基本工作流程。 #### Focused Content on Ptrade Tutorial Phase Two 考虑到请求中的具体版本号——即“第2”,这类后续章节往往聚焦于巩固前所学知识的同时引入更复杂的内容。例如: - **数据处理能力提升**:教导使用者怎样高效导入、清洗金融时间序列数据,并利用内置工具进行初步分析。 - **策略开发框架解析**:展示基于历史行情回测简单交易逻辑的方法论;可能还会涉及到一些经典模型如均值回复或是趋势跟踪等案例研究。 - **风险管理机制初探**:传授有关止损止盈设定原则的知识点,帮助投资者建立科学合理的仓位管理体系。 ```python import pandas as pd from datetime import datetime # 假设这是读取本地CSV文件的例子 df = pd.read_csv('historical_data.csv', parse_dates=['date']) print(df.head()) ``` 上述代码片段展示了如何使用 Python 和 Pandas 库加载 CSV 文件格式的历史市场数据,这对于准备用于测试新想法的数据集非常有用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值