miniQmt和Qmt对比优势以及如何抉择!

一、miniQmt和Qmt

首先我们需要了解一下什么是miniQmt和Qmt。

先说Qmt,QMT是由迅投公司开发的一款量化交易软件,一般券商采购了迅投的QMT软件后,接入行情数据服务器和交易服务器,管理 自家的用户的资金账户,就可以让它成为可以实盘的的量化交易软件。

其次是miniQmt,顾名思义嘛,mini就是小的意思,那么miniQmt就是Qmt的简化版本,要说简化肯定是有删减的,那为什么还要说抉择两字?

量化交易分为4个阶段,数据、回测、模拟、实盘。其中最重要的就是实盘,没有在实盘上跑起来的策略都是虚的,没有办法为自己带来实实在在的收益!其次就是数据,写策略所有的基础都依托于数据,数据就好像煮饭的米一样,巧妇难为无米之炊啊!

炒股无非就是我们在交易软件上下达指令,券商接受指令并在交易所代理我们的交易。而量化交易软件就是最开始的交易软件,不过下达命令的不再是我们,而是我们自己写的程序!这段程序可以利用计算机高效盯盘和下单,快速、准确的执行你已经写好的交易策略,人总有某个时刻不能盯盘,长时间盯盘对于自己的生活也是一个破坏。计算机代替人简直就和降维打击一般!

二、miniQmt和Qmt的区别

首先需要明确的一点就是Qmt和miniQmt是同一款软件,就和你手机一般,开起极简模式就只有电话、短线这些必要功能,下面以国金的Qmt界面为例:

注意:极简模式下,需要一直保持这个miniQMT的程序在运行,这意味者miniQMT也只能在windows系统下运行,因为启动的程序只有exe格式的可执行文件。

在交易账号和交易密码下面有一个极简模式,勾选上登录过后跳转的就是miniQmt界面了!两种模式的切换十分的方便!

既然都说miniQmt是极简模式,那我为啥要用它,我直接用Qmt不是更好,内容更丰富,功能更多!我没事找什么罪受!nonono,这里就陷入了一个误区,miniQmt上的东西Qmt上并不是全部都有的,它有它独一无二的东西!那就是策略代码的编写!

miniQmt和Qmt的代码编写方式是完全不同的,尽管Qmt自己内部拥有一套代码编辑器,还提供了一套量化策略的回测和实盘运行的机制。

在miniQMT模式下,您的策略代码得以释放,不再局限于QMT软件内置的编辑器编写。相反,您可以随心所欲地选择如pycharm、vscode等您熟悉的编辑器进行创作。只需编写完成后,以“python xxxx.py”的形式轻松启动您的量化策略。更进一步的是,您无需再在QMT软件中编写一行代码。只需下载迅投官方提供的xtquant包,即可在任何支持Python的环境中引入该包,轻松与miniQMT客户端建立连接。这样,您便能在QMT软件之外,自由地进行量化策略的编写与调试,使您的量化交易之旅更加流畅与高效。

小tips:xtquant包只提供了数据获取(xtdata)和 实盘交易(xttrade),并不提供回测功能,所以,若想做回测,需要自己使用比如backtrader这样的工具去做。

这就是为什么说抉择二字了!miniQMT,更注重于满足一般投资者的需求,提供更为基础和实用的功能。因此,如果您是专业投资者或机构用户,对量化交易功能有较高要求,那么QMT可能更适合您;而如果您是初学者或希望有一个更为简单、直观的量化交易工具,那么miniQMT可能更适合您。

03-12
<think>好的,用户的问题是关于QMT(Quantitative Trading Platform)、quantmodtrader的。首先需要明确用户的具体需求。QMT是迅投公司开发的量化交易平台,主要用于A股市场。而quantmod是R语言中一个用于量化金融分析的包,常用于数据获取、可视化技术分析。用户可能想知道如何将quantmod与QMT结合使用,或者如何在QMT中实现类似quantmod的功能。 需要确认QMT是否支持R语言的集成。查阅资料发现,QMT主要支持PythonVBA,而quantmod是R的包,因此直接集成可能有难度。可能需要通过其他方式在QMT中使用R代码,比如调用外部脚本或者使用中间件进行通信。 接下来,考虑用户提到的“trader”,可能是指实际的交易执行部分。用户可能希望了解如何在QMT中实现策略回测自动化交易。需要查找QMT的API文档,了解其交易函数回测框架的结构。例如,QMT提供XtTraderXtQuant等模块,用于连接交易接口数据获取。 然后,整合信息。用户可能需要将quantmod的分析结果应用到QMT的交易策略中。可能的解决方案包括:使用R进行数据分析后导出结果,再用Python读取并执行交易;或者使用Python的类似库(如pandas、TA-Lib)替代quantmod,直接在QMT的策略中实现分析。 此外,需要检查QMT的API是否支持实时数据获取订单提交。例如,XtQuant提供历史数据获取函数get_market_data,而XtTrader处理订单。代码示例可能涉及初始化交易接口、订阅数据、计算指标、生成交易信号等步骤。 最后,确保回答符合格式要求:分步骤、无第一人称、代码公式正确格式化,并在最后添加相关问题。相关问题应围绕QMT的功能扩展、quantmod替代方案以及策略部署问题展开。</think>QMT(迅投量化交易平台)与quantmod的结合应用涉及数据获取、策略开发交易执行三个核心环节。以下是实现量化交易的关键方法: --- **数据对接与处理** 通过XtQuant模块获取实时行情数据,使用Python的pandas进行数据处理: ```python from xtquant import xtdata data = xtdata.get_market_data(['000001.SZ'], period='1d') df = data.to_dataframe().reset_index() ``` **技术指标计算** 替代quantmod的技术分析方法,使用TA-Lib实现MACD指标计算: ```python import talib df['macd'], df['signal'], _ = talib.MACD(df['close'], fastperiod=12, slowperiod=26, signalperiod=9) ``` **交易策略实现** 构建双均线策略并通过XtTrader执行: ```python from xtquant.xttrader import XtQuantTrader class Strategy: def on_tick(self): short_ma = df['close'].rolling(5).mean() long_ma = df['close'].rolling(20).mean() if short_ma.iloc[-1] > long_ma.iloc[-1]: XtQuantTrader.order_stock('000001.SZ', 'BUY', 1000) else: XtQuantTrader.order_stock('000001.SZ', 'SELL', 1000) ``` --- **回测验证** 使用QMT内置回测框架验证策略有效性,核心评价指标包括: - 年化收益率:$R_{annual} = (1 + R_{total})^{252/N} - 1$ - 夏普比率:$Sharpe = \frac{E[R_p - R_f]}{\sigma_p}$ - 最大回撤:$MDD = \max_{0≤i<j≤T}(P_i - P_j)/P_i$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值