求一阶微分方程通解和特解

注:±C也可看作新的C

一、把y'换成dy/dx,dy与y放等式左边,dx与x放等式右边,对两边同时求不定积分。对于求特解的,还要把给出的点带入到结果中求出C。有时,题干不会明着告诉你要求特解,要自己判断能不能确定某一点点值,例:

求f(x),题目本身不难,两边同时求导,得到y=C*e^(2x),但是有原式可知,x=0时,等式右边的积分等于0,f(0)=ln2,所以C=ln2,得到特解

 

二、无法完全分离x和y时,把dy/dx放一边,其余的放另一边,然后判断式子属于一下何种情况,求解

1.

\frac{dy}{dx}=f\left ( \frac{y}{x} \right )

设u=y/x,原式y/x变为u,dy/dx中的y替换为ux,变为u+x*(du/dx)

2.一阶线性微分方程

结果直接为下式

 

式子中只留下一个C,在幂上的积分结果不用加C

3.

 

如果a1/a2=b1/b2=k,u=a2x+b2y,此时,a1x+b1y+c1变为ku+c1,a2x+b2y+c2变为u+c2

如果不相等,则由下式求出h,k

然后设x=X+h,y=Y+k,此时a1x+b1y+c1变为a1X+b1Y,a2x+b2y+c2变为a2X+b2Y。此时,分子分母依然有X和Y,可以上下同时除以X,然后用第一种方法求解

4.\frac{dy}{dx}=f(x,y)-\frac{y}{x}

设u=xy,y变为u/x,dy/dx变为(du/dx-u/x)/x

5.伯努利方程

设u=y^(1-n),转化为求

然后用情况2的解法求

6.

 

求对y的偏导时,直接把其余的一切未知数当成常数,对于求对x的偏导同理

通解如下式,选择一个即可。且通解中的x0,y0任取,一般取0,如果会出现广义积分(即反常积分)则取1

7

等式右边出现x,y的混合部分或多次重复出现的式子,令u=该式子

最后,如果上面任何一种情况都不符合,那就用X替换y,Y替换x,求出结果后代换回去

微分方程通解涉及几个不同的方法,具体取决于方程的形式。以下是几种见的微分方程及其对应的解决方案。 ### 分离变量法 适用于形式为 $\frac{dy}{dx} = g(x)h(y)$ 的方程。这种情况下,可以将所有含 $y$ 的项移到边,所有含 $x$ 的项移到另边,然后两边分别积分。 $$\int \frac{1}{h(y)} dy = \int g(x) dx + C$$ ### 线性微分方程 对于形如 $\frac{dy}{dx} + P(x)y = Q(x)$ 的方程,可以通过找到个积分因子 $e^{\int P(x) dx}$ 并乘以整个方程来简化它。之后,左边成为完全导数 $(ye^{\int P(x) dx})'$ 右边则是个可以直接积分的表达式。 $$d(y e^{\int P(x) dx}) = Q(x)e^{\int P(x) dx} dx$$ 接着对方程两边同时积分即可获得通解。 ### 伯努利方程 针对非线性的伯努利方程 $\frac{dy}{dx} + P(x)y = Q(x)y^n$ (这里$n$不是0或1),先做变换 $z=y^{1-n}$ 转化成线性方程再解。 ### 定义数变易法 有时直接给出的是齐次方程的解,而非齐次方程可通过定义新的函数代替原来的未知函数中的任意数,从而构造出个新的方程组来解决。 ### 示例 考虑简单的分离变量型方程 $\frac{dy}{dx}=xy$. 移动各项得到 $\frac{dy}{y}=xdx$, 接着两边积分得出结果: $$\ln{|y|}=\frac{x^2}{2}+C_1$$ 进步整理可以获得最终的答案: $$y=Ce^{\frac{x^2}{2}}$$ 这里的 $C=e^{C_1}$ 是积分过程中产生的任意数。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值