拓展欧几里得算法

拓展欧几里得算法,可以用来求解一个一元二次方程的特解。
形如: a x + b y = g c d ( a , b ) ax + by =gcd(a,b) ax+by=gcd(a,b)及其变式

为什么是拓展欧几里得呢,因为这个特解是从欧几里得算法(辗转相除法)的基础上来求得的,即 g c d − > e x g c d gcd -> exgcd gcd>exgcd
我们知道求 g c d gcd gcd时,最后 r e t u r n return return出来的结果是 b b b,如果我们此时再往深递归一层,也就是 b = 0 b = 0 b=0的时候,此时返回的结果值就是 g c d = a gcd = a gcd=a,由此我们得到了在此情况下的一个特殊解 x = 1 , y = 0 x = 1,y = 0 x=1,y=0,由这个解我们就可以回溯一层层的求出其它的解了。

g c d ( a , b ) = g c d ( b , a % b ) gcd(a,b) = gcd(b,a\%b) gcd(a,b)=gcd(b,a%b),我们设当前层为 g c d ( b , a % b ) gcd(b,a\%b) gcd(b,a%b)的话,设特解为 x 0 和 y 0 x_0 和 y_0 x0y0,其上一层的解为 x 1 和 y 1 x_1和y_1 x1y1,那么
a x 1 + b y 1 = g c d ( a , b ) = g c d ( b , a % b ) = b x 0 + ( a % b ) y 0 ax_1 + by_1 = gcd(a,b) = gcd(b,a\%b) = bx_0 + (a\%b)y_0 ax1+by1=gcd(a,b)=gcd(b,a%b)=bx0+(a%b)y0,由可知
a % b = a − a b ∗ b a\%b = a - \frac ab * b a%b=abab,则
a x 1 + b y 1 = b x 0 + ( a % b ) y 0 = b x 0 + ( a − a b ∗ b ) y 0 = a y 0 + b ( x 0 − a b y 0 ) ax_1 +by_1 = bx_0 + (a\%b)y_0 = bx_0 + (a - \frac ab*b)y_0 = ay_0 + b(x_0 - \frac aby_0) ax1+by1=bx0+(a%b)y0=bx0+(abab)y0=ay0+b(x0bay0)
这样通过对应系数相等,我们就可以比较出来
{ x 1 = y 0 y 1 = x 0 − a b ∗ b \begin{cases} x_1 = y_0 \\ y_1 = x_0 - \frac ab*b\end{cases} {x1=y0y1=x0bab
这样我们就可以得到回溯得到我们需要的一组解了。


如果题目要我们求得是
a x + b y = c ax + by = c ax+by=c这样的不定方程的解,如果 c % g c d ( a , b ) ≠ 0 c \% gcd(a,b) \neq 0 c%gcd(a,b)=0,那么就无解,否则的话只需要把 c c c先除到等式左边再乘上 g c d ( a , b ) gcd(a,b) gcd(a,b)就变成了一般我们熟悉的形式了。
同理这样的我们求出来的 x 和 y x和y xy,也应改逆向操作,先除 g c d gcd gcd再乘 c c c,就是我们要求的解了。

如果求 a x + b y = g c d ( a , b ) ax + by = gcd(a,b) ax+by=gcd(a,b)的多组解,我们可以构造
x = x ∗ + k ∗ b x = x^* + k * b x=x+kb y = y ∗ − k ∗ a y = y^* - k * a y=yka,形如这样的解带回原方程还是只剩下 a x + b y = g c d ( a , b ) ax + by = gcd(a,b) ax+by=gcd(a,b)这样的形式,注意这里有个细节就是防止 a a a b b b不互质这里要用 a g c d ( a , b ) \frac a{gcd(a,b)} gcd(a,b)a b g c d ( a , b ) \frac b{gcd(a,b)} gcd(a,b)b操作。

如果求得是最小的正整数解,求出来的 x x x只需要先令 t = b g c d ( a , b ) t = \frac b{gcd(a,b)} t=gcd(a,b)b(保证其为正,后面要取模),然后 x = ( x % t + t ) % t x = (x \%t + t)\%t x=(x%t+t)%t即可。
证明的话,这篇大佬博客写的不错

还可以用扩展欧几里得算法来求解逆元, a x ≡ 1 ( m o d p ) ax \equiv 1 (modp) ax1(modp),即说明我们知道逆元存在条件即为 g c d ( a , p ) = 1 gcd(a,p) = 1 gcd(a,p)=1,这样同余式其实就是可化为 a x + p y = 1 ax + py = 1 ax+py=1,这样逆元就可以用拓欧来直接求出来了。

未完待续~

void exgcd(int a,int b,int &x,int &y) {//拓欧求逆元
	if(b == 0) {//最后一层 满足 ax + by = gcd(a,b) 的特解 x = 1,y = 0
		x = 1; y = 0;
		return ;
	}
	exgcd(b,a%b,x,y);//上一层的特解x
	int t = x;  //x = y1,y = x1 - (a/b)*y1
	x = y;
	y = t - a / b * y;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值