拼接图像盲认证算法设计与实现-开题

本文探讨了数字图像拼接篡改的盲认证技术,概述了现有算法原理,着重于基于马尔科夫链和SVM的特征提取方法。作者还介绍了研究过程,包括算法实现、测试以及优缺点分析,旨在提升图像防伪能力。
摘要由CSDN通过智能技术生成

 开题报告

论文(设计)题目

拼接图像盲认证算法设计与实现

  • 课题的背景与意义

随着数字图像获取设备特别是数码相机的普及和互联网的高发展,数字图像已成为传递视觉信息的重要载体。为了获得更令人满意的数字图像,以 Photoshop(简称 PS)为代表的图像处理工具广泛流行,这使图像的编辑和修改越来越容易,因此PS成为了专业摄影师和业余爱好者优化照片质量、进行艺术创作的有力工具。

数字图像处理使我们的生活变得丰富多彩。但与此同时,利用图像编辑软件可以容易地对数字照片进行篡改或伪造,图像内容的真实性不时受到质疑。2007 年10月,一名陕西村民宣称他拍到濒危野生动物华南虎的一组照片, 相关部门随即予以确认。照片公布后很快就引起公众的怀疑,后来被认定其拍摄对象其实是五年前的一张年画。近年来国内外照片造假的丑闻时有曝光。例如 2003 年5月洛杉矶时报刊登的伊拉克战场新闻照片被揭露是由两张照片拼凑的, 刻意夸大了现场敌对情绪。现在利用软件工具修改编辑数字图像已经十分普遍,可以将它统称为对图像进行PS。对于数字照片是否允许PS,是一个多年来争论不休的问题。正常的 PS 处理是充分发挥数码相机优势、实现最佳视觉效果的必要步骤,大幅度剪裁拼接、变形、合成加工也是某些艺术创作的常用手法。但是在新闻报道、司法取证、医学影像、纪实摄影等场合,不当的PS例如故意修改图像内容、移动和复制局部区域、删除特定对象等,无疑构成非法的篡改和伪造。一个不争的事实是:尽管图像篡改不断被揭露并受到谴责,对数字图像进行伪造篡改的势头有增无减。如何判断一幅图像是否曾被篡改已成为信息安全领域的重要课题,图像防伪认证是今后相当长一段时间里图像处理、信息安全、计算机科学领域研究者面临的一个难题。

  • 国内外研究的历史和状况

国内外常见的数字图像认证方法有基于脆弱数字水印的图像认证法以及基于数字签名的图像认证法,这两种方法都可认为是主动方法。水印方法需要在图像中嵌入水印,对载体图像感知性能有影响;签名方法虽然没有改动图像,但需预先产生辅助信息,且签名容易被丢弃。基于前面两种方法的局限性, 被动认证方法得到越来越多的关注,该方法既不需要事先在图像中嵌入水印,也不依赖辅助信息,仅根据待认证的图像本身就可以判断其是否经过篡改、合成、润饰等伪造处理,近年来,用于解决数字图像真实性问题的盲认证技术越来越受到人们的关注,正处于迅速发展阶段。数字图像盲认证是指在不依赖任何预签名提取或预嵌入信息的前提下,对图像的真伪和来源进行鉴别。需要指出的是, 上述已提出的图像盲取证算法大多针对人工处理图像,即伪造图像是由用户通过图像编辑软件进行专业的特效处理完成的,以达到图像内容混淆视听的目的。这需要用户具备相当的图像处理水平, 而且完成一幅人眼无法觉察的伪造图像费时费力。相反,采用计算机智能自动算法来伪造图像则方便、快捷得多,可以很大程度上降低图像处理的复杂性。本文主要综述了数字图像区域复制篡改的盲认证技术算法的设计与实现。

针对区域复制篡改方式,近年来国内外学者提出了很多盲认证的检测方法,大致分为三类[1-2]:1)基于分块特征匹配的方法;2)基于特征点检测与特征匹配的方法;3)利用JPEG编码特征的盲认证方法。针对第三类方法,国内学者也提出了一些盲认证方法,赵洁等[3]提出利用jpeg系数变化率实现区域复制篡改和拼接合成篡改的盲认证;王浩明等[4]通过分析二次压缩量化离散余弦变换系数直方图的特点,将JPEG篡改图像的检测转化为对图像子块一次压缩与双压缩的判别;王青等[5]根据原始DCT系数与重压缩后DCT系数的映射关系建立图像重压缩概率模型实现盲认证。

这些盲认证方法都基于先检测待测图像,给待测图像进行预处理,通过空域分块或特征点检测、特征值提取、特征值匹配来进行检测图像是否被篡改。

在预处理方面,国内外大部分算法都是针对灰度图像进行检测,因此在此阶段工作主要是色彩转换,主要技术分别是针对亮度信息或某一色度分量[6]进行处理。

在空域分块或特征点检测方面,国内外普遍采用空域分块特征值匹配的检测方法。

在特征提取方面,国内外学者提出了许多检测方法,Fridrich等[7]最先提出一种基于滑动窗口分块特征匹配的区域复制篡改检测方法,将DCT系数作为图像块的特征描述;Huang等[8]将量化DCT系数之字形排序为一堆数组,通过截断操作生成降低维数的图像块特征,该方法可以抵抗JPEG压缩和模糊攻击;CAO等[9]提出采用内切圆块对每个DCT块进行特征描述,通过计算内切圆块四等分后每部分的平均值生成特征向量;Popescu等[10]采用主成分分析算法对图像块进行降维处理,并将量化后的结果分量作为特征矩阵的一行,该方法对加噪音和有损压缩具有鲁棒性;Bashar等[11]提出采用核主元分析算法提取分块特征,得到基于KPCA的特征对于加噪核JPEG压缩具有较好的鲁棒性;申铉京等[12]等提出对每个sift特征点提取HSI彩色特征;Gan等[13]提出计算每个分块的改进圆投影向量组成特征矩阵,通过pca对特征矩阵进行维数缩减,仅保留具有高积累贡献的分量;Myna等[14]提出在每个小波分解层上将低频子带中的分块从直角坐标映射到对数极坐标,并采用相位相关法迭代判断图像块的相似性;Luo等[15]提出7个基于亮度的鲁棒性特征对图像块进行特征描述;Wang等[16]将每个圆形块划分为4个同心区域,计算每个区域的平均像素值组成特征向量,;Wandji等[17]提出分别对每个图像分块的R,G,B三个颜色通道提取24个模糊不变矩阵得到72维的特征向量,再采用PCA算法进行降维处理,该算法对于模糊、JPEG压缩、加噪攻击具有鲁棒性;Ryu等[18]计算分块的Zernike矩并用得到的向量的幅值对分块进行特征描述;Zhong等[19]结合指数傅里叶矩和直方图不变矩提取分块特征;Kang等[20]提出通过对每个分块进行奇异值分解获取奇异值特征向量;Li等[21]提出对小波变换得到的低频子带图像进行SVD。

  • 研究内容
  1. 综述目前拼接图像盲认证算法,阐述几种识别算法原理,定性分析它们的优缺点。

(2)仔细阅读算法文献,理解算法。

(3)分析如何实现拼接图像盲认证算法的流程。

(4)根据所给文献设计拼接图像盲认证算法。

(5)用ps过的图片和正常图片对算法进行检测。

(6)分析方法的优缺点,并进行改进。

(7)完成总结,达到设计目标。

四、研究方案及步骤

本次论文撰写主要通过维普网、中国知网、百度文库和校图书馆等方式查找文献资源,不断翻阅大量资料,反复思索,并从中选取与论文相关的文献进行参考,通过学习研究以及导师的指导下,完成论文的写作。

本课题研究步骤大致如下:

(1)学习Matlab软件相关编程等方面的知识,为了方便日后设计使用;

(2)根据文献设计图像灰度化等算法;

(3)设计适用于拼接图像盲认证的相关算法,选择针对拼接图像利用马尔科夫链进行像素相关性特征提取技术使用SVM分类器进行图像的特征分类鉴别;

(4)设计出集成上述算法的原型系统程序;

五、论文提纲

第一章 绪论  

第二章 拼接图象盲认证算法介绍

第三章 拼接图像盲认证算法实现流程

第四章 拼接图像盲认证算法结果分析

第五章 结论与展望

六、其他

1.论文(设计)工作量估计:工作量适中。

2.工作条件:硬件条件:联想笔记本(windows10、酷睿i5、双核);软件条件:Matlab2017具备相应的开发环境;指导老师刘伟有较为丰富的图像处理和模式识别的研究经验;学校实验室及图书馆的电子阅览室。

3.存在的问题:对盲认证算法不了解,对于图像处理和模式识别的有关知识模糊,对于算法设计的不熟悉,没有Matlab的编程经验。

4.拟采取的解决措施:理论知识方面:平时在数图书馆多多阅读数字图像处理和模式识别相关书籍及网上(百度)和电子阅览室(知网等)查阅资料,加强对基础知识的了解和本课题的认知,在心里形成设计基本框架。研究算法方面:关于课题中提到的各个专业内容仔细研究Matlab图像处理书籍中所给出的基本程序,在电脑中多加练习、积极思考并及时与刘伟老师沟通有关问题。

七、参考文献

[1]AL-QERSHI O M,KHOO B E.Passive Detection of copy-move forgery in digital images:State-of-the-art[J].Forensic Science International,2013,231(1/2/3):284-295.

[2]CHRISTLEIN V,RIESS C,JORDAN J,et al.An evaluation of popular copy-move forgery detection approaches[J].IEEE Transactions on Information Forensics and Security,2012,7(6):1841-1854.

[3]赵洁,郭继昌.基于JPEG系数变化率的图像复制粘贴篡改检测[J].浙江大学学报(工学版),2015,49(10):1893-1901.

[4]王浩明,杨晓元.一种基于DCT系数直方图差异的JPEG图像篡改检测[J].四川大学学报(工程科学版),2014,36(9):41-46.

[5]王青,张荣.基于DCT系数双量化映射关系的图像盲取证算法[J].电子与信息学报,2014,36(9):2068-2074.

[6]HUSSAIN M,MUHAMMAD G,SALEH S Q,et al.Copy move image forgery detection using multiresolution weber descriptos[C]//Proceedings of the 8th International Conference on Signal Image Technology and Internet Based Systems.Naples:IEEE Press,2012:395-401.

[7]FRIDRICH J,SOUKAL D,LUKAS J.Detection of copy-move forgery in digital images[C]//Proceedings of Digital Forensic Research Workshop.Cleveland:[s.n.],2003:55-61.

[8]HUANG Yanping,LU Wei,SUN Wei,et al.improved DCT-based detection of copy-move forgery in images[J].Forensic Science International,2011,206(1/2/3):178-184.

[9]CAO Yanjun,GAO Tiegang,FAN Li,et al.A robust detection algorithm for copy-move forgery in digital images[J].Forensic Science International,2012,214(1/2/3):33-43.

[10]POPESCU A C,FARID H.Exposing digital forgeries by detecting duplicated image regions[R].Hanover:Computer Science Department,Dartmouth College,2004:515.

[11]BASHAR M,NODDA K,OHNISHI N,et al.Exploring duplicated regions in natural images[J].IEEE Transactions on Image Processing,2010(99):1-40.

[12]申铉京,朱叶,吕颖达,等.基于sift和hsi模型的彩色图像复制-粘贴盲识别算法[J].吉林大学学报(工学版),2014,44(1):171-176.

[13]GAN Yanfen,CANG Jing,A detection algorithm for image copy-move forgery based on improved circular projection matching and PCA[J].Sensors&Transducers,2013,159(11):19-25.

[14]MYNA A N,VENKATESHMURTHY M g,PATIL C G.Detection of region duplication forgery in digital images using wavelets and log-polar mapping[C]//Proceeding of the International Conference on Computational Intelligence and Multimedia Applications.Sivakasi:IEEE Press,2007:371-377.

[15]LUO Weiqi,HUANG Jiwu,QIU Guoping.Robust detection of region duplication forgery in digital image[J].Chinese Journal of Computers,2007,4(11):746-749.

[16]WANG Junwen,LIU Guangjie,LI Hongyuan.et al.Detection of image region duplication forgery using model with circle block[C]//Proceedings of the 1st International Conerence on Multimedia Information Networking and Security.Wuhan:IEEE Press,2009:1750-1753.

[17]WANDJI N D,SUN Xingming.Robust detection of copy-move forgery in color images[C]//Proceedings of the International Conference on Image Processing,Computer Vision&Pattern Recognition.Las Vegas:World,2013:492-495.

[18]RYU S,KIRCHNER M,LEE M,et al.Rotation invartant localization of duplicated image regions based on zernike moments[J].IEEE Transactions on Information Forensics and Security,2013,8(8):1355-1370.

[19]ZHONG Le,XU Weihong.A robust image copy-move forgery detection based on mixed moments[C]//Proceedings of the 4th IEEE International Conference on Software Engineering and Service Science.Piscataway:IEEE Press,2013:381-384.

[20]KANG Xiaobing,WEI Shengmin.Identifying tampred regions using singular value decomposition in digital image forensics[C]//Proceedings of the International Conference on Computer Science and Sofeware Engineering.Wuhan:IEEE Press,2008:926-930.

[21]LI Guohui,WU Qiong,TU Dan,et al.A sorted neighborhood approach for detecting duplicated regions in image forgeries based on DWT and SVD[C]//Proceedings of the IEEE International Conference on Multimedia and Expo.Beijing:IEEE Press,2007:1750-1753.

指导教师意见及建议(从选题、理论与实证准备、研究(设计)方法、工作安排等方面给出评价,并提出指导意见):

指导教师签名:

                                       年月日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值