毫米波雷达设计:1.原理与分类

(1)雷达根据波段分类

L波段(1-2 GHz)

  • 应用:主要用于长距离空中和海上监视。由于其波长较长,L波段雷达能够在恶劣天气条件下运作,且对雨衰减(rain fade)较不敏感。
  • 例子:机场的航空交通管制雷达、舰船上的海上监视雷达。

S波段(2-4 GHz)

  • 应用:常用于中距离天气预报和船舶导航。S波段雷达在处理湿度和雨滴方面表现较好,适合用于天气监测。
  • 例子:天气雷达、舰船雷达。

C波段(4-8 GHz)

  • 应用:广泛用于空中交通管制、天气监测(特别是降水量的测量)和海洋监测。C波段雷达能够提供较高的分辨率,同时受到中等程度的雨衰减。
  • 例子:天气雷达、机场雷达。

X波段(8-12 GHz)

  • 应用:由于其较高的分辨率,X波段雷达常用于军事目标识别、导航以及短距离监测。X波段对雨和湿度较敏感,因此在清洁条件下效果最佳。
  • 例子:军事侦察、机场地面移动目标识别(GMTI)雷达。

Ku波段(12-18 GHz)

  • 应用:Ku波段雷达具有较高的分辨率,常用于高精度的气象监测、卫星通信和军事应用。
  • 例子:精确天气预报、军事侦察卫星。

Ka波段(26.5-40 GHz)

  • 应用:Ka波段雷达提供极高的分辨率,适用于专业的气象研究、军事目标识别和一些高频通信系统。
  • 例子:云和降水的细节研究、卫星数据链。

K波段(18-26.5 GHz)

       应用:K波段雷达因其较高的频率和相对较小的波长,提供较好的分辨率,适合用于空中交通管制、海洋监测、以及一些自动汽车雷达系统。此外,K波段也被用于近距离雷达应用,如速度检测和目标跟踪。

       例子:机场的航空交通管理、船只的导航与避碰系统、自动驾驶汽车中的碰撞预防系统、警用雷达枪。

毫米波波段(30-300 GHz)

  • 应用:毫米波雷达具有极高的分辨率和精度,适用于汽车防撞系统、人群监测、高精度短距离探测等领域。
  • 例子:汽车雷达系统、安全和监控系统。
  • 记忆口诀:"猎(L)杀(s)蔡(c)徐(x)坤(k)"

(2)毫米波雷达

1.为什么叫毫米波?

        毫米波指的是那些波长大约在1毫米到10毫米之间,对应频率范围大约在20GHz到300GHz的电磁波。(市面上24G的也叫毫米波,其实是属于K波段)

2.在自动驾驶领域毫米波雷达与摄像头相比的优势?

  1. 全天候性能:毫米波雷达能够在各种天气条件下工作,包括雨、雾、雪等。它们不受光线条件(如直射日光或夜间)的影响。相比之下,摄像头的性能会受到光照条件和天气的显著影响,如在夜间或逆光条件下,摄像头的效果会大大降低。

  2. 距离和速度测量:毫米波雷达能够直接测量目标的距离(电磁脉冲反射)和速度(多普勒效应),这对于自动驾驶车辆来说是非常重要的信息。雷达通过发送电磁波并接收反射回来的信号来测量这些参数,而摄像头则主要依靠图像处理技术来估计距离和速度,这可能不如雷达那样直接和精确

  3. 抗干扰能力:毫米波雷达相对于摄像头具有更好的抗干扰能力。雷达波可以穿透烟雾、尘埃和某些物质,而这些条件可能会干扰或阻挡摄像头获取清晰的图像。

  4. 简化的数据处理:雷达系统提供的数据通常比摄像头生成的图像数据更加简洁,这意味着处理这些数据以识别和跟踪目标所需的计算资源较少。尽管现代图像识别技术非常先进,但处理高分辨率视频流仍然是计算密集型的。

3.毫米波测量速度与距离的原理?   

(1)测量距离

雷达测量距离的基本原理是通过发送电磁波脉冲,然后接收这些波从目标物体表面反射回来的信号。通过计算电磁波脉冲发射出去到接收到反射波所经历的时间,雷达可以确定到目标的距离。这个原理可以用以下公式表达:

这里的速度是电磁波在空气或其他介质中的传播速度(在空气中大致等于光速,约为3.0×10^8 米/秒),时间是从雷达发送信号到接收到反射信号的总时间。除以2是因为这个时间包括了电磁波到目标的行程和从目标返回雷达的行程。

(2)测量速度

毫米波雷达测量目标速度的原理基于多普勒效应。当雷达发射的电磁波遇到一个运动中的目标时,反射回来的波的频率会根据目标的运动情况发生变化。如果目标物体远离雷达,反射波的频率会降低(红移);如果目标物体朝向雷达移动,反射波的频率会升高(蓝移)

通过测量发送频率与接收频率之间的差异,雷达可以计算出目标物体的速度。这个计算可以由以下公式简化表示:

这里的频率变化是指接收频率与发送频率之间的差值,波长是雷达使用的电磁波的波长。

结合这两种测量方法,毫米波雷达能够提供关于目标物体的距离和速度的精确信息,这对于自动驾驶系统的导航和避障至关重要。

4.激光雷达是毫米波雷达吗?

不是,激光雷达(LIDAR)并不属于任何一个电磁波频段。LIDAR技术是基于光学(光波)而不是基于传统的电磁波频段。它主要通过发射激光脉冲并测量反射光脉冲的时间来测量距离和其他特性,从而获得目标的详细信息。激光雷达使用的频率远高于毫米波,属于红外线、可见光或紫外线范围内,这些频率对应的波长远远小于1毫米,因此不在您列出的电磁波波段中。

5.市面上的毫米波雷达厂家

(一)卖毫米波模组的

(1)深圳海凌科:

芯片:ADT6101P——杭州岸达科技有限公司的一款Soc

BISS0001--无锡中微爱芯

(2)微雪电子:

 芯片:矽典微的S3KM111L——单发单收智能毫米波传感器SoC(20¥)

(3)云帆瑞达:

 芯片:矽典微的S3KM111L——单发单收智能毫米波传感器SoC(20¥)

(二)卖雷达芯片的

1.加特兰微电子科技(上海)有限公司

加特兰微电子致力于应用在汽车辅助及自动驾驶、安检成像、智能家居等领域的77GHz CMOS工艺毫米波雷达芯片的研发。2017年,该公司发布了第一代77GHz毫米波雷达射频单芯片。2019年3月,发布第二代CMOS毫米波雷达芯片SoC-ALPS系列。Alps系列芯片集成了高速ADC、完整的雷达信号处理baseband以及高性能的CPU核。目前,加特兰微电子在全球已与90多家客户展开合作。

2.杭州岸达科技有限公司

杭州岸达科技成立于2016年7月,从事77GHz CMOS毫米波雷达单芯片IC设计、研发及销售,为无人机、汽车、工业控制等行业提供毫米波雷达全面的射频前端解决方案和雷达模组开发及销售。2019年2月,岸达科技发布了77GHz CMOS毫米波雷达芯片ADT2001,是全球首款基于CMOS工艺,采用相控阵系统架构,单颗芯片集成16通道的车载77GHz CMOS毫米波雷达芯片。

3.厦门意行半导体科技有限公司

厦门意行半导体成立于2010年,是国内最早从事民用毫米波雷达射频前端集成电路产品开发及提供雷达解决方案的企业。2018年11月意行半导体正式发布了一颗24GHz、一发四收、收发一体的毫米波雷达单芯片SG24TR14 MMIC。目前,该公司已经量产SG24T1/SG24R1套片和SG24TR12一发两收集成单芯片,产品在车载产业、无人机、智能交通、安防以及消费电子等多个产业有较好的应用。

4.清能华波(北京)科技有限公司

清能华波成立于2010年,专注车载与工业毫米波雷达技术研究与应用。目前,该公司已经完成了毫米波雷达全集成核心芯片的研发,并逐步进入产业化进程,其毫米波雷达核心芯片将会在未来3-5年之内逐步实现部分自主可控。

5.北京微度芯创科技有限责任公司

北京微度芯创科技成立于2017年,专注研发具有高集成度的毫米波雷达传感器芯片以及相关应用场景的解决方案,其产品的应用范围包含汽车电子、智能交通、安检以及工业控制领域。目前,该公司已经获得天使轮融资,融资金额未公开。

6.上海矽杰微电子有限公司

矽杰微电子的前身是上海微技术工业研究院的RFIC部门,2016年开始独立运营。目前,该公司已经开发了具有自主知识产权的高度集成24GHz雷达SoC SRK1202A,该芯片集成了小数分频锁相环和收发机。26位小数分频可实现赫兹级分频精度,支持FSK、FMCW、LMFSK等多种调制模式,同时具有优异的射频性能。

7.北京晟德微集成电路科技有限公司

晟德微集成电路成立于2018年9月,是一家汽车芯片研发商,主要为汽车提供77GHz以上的毫米波雷达接收机芯片。目前,该公司自研的FMCW雷达TRX已经完成了第一版芯片流片,可覆盖76—81GHz波段。

8.问智微电子有限公司

问智微电子2014年在南京成立,主要从事微波毫米波系统级芯片(SoC)的研制和开发,应用领域包括雷达和无线通讯等行业。其芯片研发方向主要包括:毫米波雷达、通讯、成像等SoC芯片,微波/毫米波相控多功能SoC芯片,超宽带芯片。

9.江苏微远芯微系统技术有限公司

江苏微远芯微系统2015年12月成立,主要从事毫米波雷达的芯片及微系统产品研发、生产、销售和服务,具备全部的毫米波单芯片设计能力,具备芯片设计及相关信号处理的足够的技术积累和相关IP。该公司与华天科技(昆山)电子合作开发的毫米波雷达芯片硅基扇出型封装获得成功,其产品封装良率大于98%,已进入小批量生产阶段。

10.东南大学毫米波国家重点实验室

东南大学毫米波国家重点实验室,致力于毫米波频谱资源的开发利用研究。该实验室拥有先进完善的微波毫米波测试设备,其实验仪器设备固定资产超过4000万元,拥有从L波段到W波段完整的信号参数、网络参数、天线及电磁散射特性的测试设备。在国际权威刊物上发表了一系列论文,并提交了40多项发明专利申请。

内容概要:本文深入探讨了AMESim仿真平台在电动汽车(EV)热泵空调系统设计优化中的应用。首先介绍了AMESim的基础建模方法,如构建制冷循环模型中的压缩机、蒸发器和冷凝器等组件,并详细解释了各部件的工作原理及其参数设定。接着重点阐述了EV热泵空调系统的特殊之处,即不仅能够制冷还可以在冬季提供高效的制热功能,这对于提高电动汽车在寒冷条件下的续航里程和乘坐舒适性非常重要。文中给出了几个具体的案例,包括通过改变压缩机运行频率来进行性能优化,以及针对低温环境下热泵系统的控制策略,如四通阀切换逻辑、电子膨胀阀开度调节等。此外,还讨论了热泵系统其他子系统(如电池温控)之间的协同工作方式,强调了系统集成的重要性。最后分享了一些实用的经验技巧,例如如何避免仿真过程中可能出现的问题,怎样评估系统的整体性能等。 适合人群:从事汽车工程、暖通空调(HVAC)领域的研究人员和技术人员,特别是关注新能源汽车热管理系统的专业人士。 使用场景及目标:适用于希望深入了解电动汽车热泵空调系统特性的工程师们,旨在帮助他们掌握基于AMESim进行系统建模、仿真分析的方法论,以便更好地指导实际产品研发。 阅读建议:由于涉及到较多的专业术语和技术细节,建议读者具备一定的机械工程背景知识,同时配合官方文档或其他参考资料一起研读,以加深理解。
期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值