暗原色先验去雾算法的一些认识
摘要:本文首先简单介绍基于暗原色先验去雾算法,然后总结出各变量的求解,最后利用已知程序检验算法的效果。
引言:在雾天时,由于空气中大量悬浮粒子的散射和吸收作用,使得光学成像对比度降低,颜色偏灰白色,严重影响视觉效果,这直接限制室外各种视觉系统的作用。因此对图像去雾有着重要的现实意义。暗原色先验是基于户外无雾图像数据库得到的一条简单有效的图像先验规律。该理论的核心是:绝大多数户外无雾图像的每个局部区域里,至少存在一个颜色通道的强度值很低。称之为在暗像素。雾天中,这些暗像素会因为雾光的充斥而强度值变大。因此这些暗像素能够用来评估雾光的透射情况。根据McCarney的大气散射模型,根据光在雾天传输的物理特性可以得到较好的去雾原像。
- 雾天图像去雾模型
McCarney的大气散射模型(如下)被广泛应用于计算机视觉和图形学领域中
(1)
I是输入图像(观测到的)光强度,t指光线透射率,A是大气光成分,J是无雾时景物的光线强度。图像去雾目标就是由已知的I求得未知参数J,A,t。由于方程的个数少于未知量的个数,需增加约束条件来求解。暗原色先验即是其中的一种约束。
2.暗原色先验
暗原色先验是基于大量户外无雾图像观察到的一条统计规律:在绝大数户外无雾图像的每个局部区域至少存在某个颜色通道的强度值很低。对户外无雾图像
进行分块,对每个像素块定义暗原色如下:
(2)
式中:
是以
为中心的正方形邻域,
为
三原色的一个通道,
即为图像
在这个邻域的暗原色。观察统计表明
趋于零。在带雾