DTC补货实战:从算法到落地

本文作者介绍了在DTC场景下如何从算法设计到落地执行补货策略。面对促销频繁、销量波动大的特点,作者提出基于联合误差分布的安全库存计算方法,以解决传统安全库存理论在DTC场景中的局限性。通过仿真回测验证模型有效性,并通过MLOps和仿真相结合的方式确保模型稳定性和上线准入。在落地过程中,针对采纳率不高和归因分析的问题,进行了策略调整和交互设计改进,最终实现库存天数降低14.8%和缺货率降低6.9%的效果。未来,作者期望实现面向财报值的优化和集成预测、决策和仿真的补货产品。
摘要由CSDN通过智能技术生成

本文作者:凡飞,从快递到快消,一个平凡的供应链算法深耕者。

“ 我希望衡量我们ai团队价值的,不是创造了多么精深的算法,而是跨越算法到落地间距离的能力。”

近年来随着电商行业从增量市场逐步成长到了存量市场,不少店家的规模已经达到一定水平,营收的增长也开始放缓,这时候对电商渠道的供应链管理就开始被大家所关注到。

供应链就像古代战争的粮草供应,一两场闪电战或许看不到粮草供应的重要性,但只要涉及持久、大型战役,那必是三军未动,粮草先行。

现在的商场也是一样,在企业规模较小,处于高速增长、占领市场的阶段,供应链不一定被关注到;但只要规模达到一定程度,供应链将会像企业的心脏一样,用更少的资金流,为企业的业务运转提供更稳定的商流,成为企业“先为不可胜”的条件之一。

有幸的是,在我们与某个大KA客户合作的过程中,专门就DTC场景的补货做了深入的探索,从经典的安全库存理论出发,到针对性地设计调整,再走向价值预测算,最终到落地,得到了业务指标优化。本文将我们的思考、实践分享出来,与各位看官交流,希望能有更多的收获 :)

1. 算法设计

供应链的话题在国内已经发展有20年之久了,在方法论层面,我们非常推崇刘宝红老师《供应链的三道防线》所沉淀的理论,从预测到补货到采购、从算法到流程到组织架构,都有非常鞭辟入里的见解,我们也得以站在巨人的肩膀上创造价值。

而在补货领域,比较经典且在工业界广泛应用的,还是安全库存理论,较少涉及复杂的运筹学或者强化学习。当我们假定Lead Time恒定时,一般的安全库存计算方式可以表示如下:

其对应的数理逻辑可以由下图解释,假如未来实际发生的销量服从正态分布,那么我们ai模型预测结果往往是对未来的期望,如果我们直接拿预测值来补货,将有50%的概率会造成缺货。

这时候我们就期望在指定的 Service Level 情况下,库存能保证不缺货,实际上就是求其对应置信区间上的值。这是对一天的预测补货来看的,考虑到当天下的补货订单可能要隔几天才能入库,在假设销量是正态分布的情况下,多天安全库存就是上述的公式。

图1:预测值、安全库存、Service Level在统计上的关系

更进一步,工业界在一个决策周期内(如三天补一次货、一周排一次产等),销量一般不会服从正态分布,但只要我们的预测模型选择恰当,往往误差还是可以接近正态分布的,这时候我们也可以用同样的方式计算安全库存。比如某些场景下,周一到周日销量呈现周期性变化,那么我们在模型中加入日期的因素即可。

道理虽然简单,但结合到实际业务会发现,这里的正态分布假设存在很大问题。未来每一天的预测误差服从同一个正态分布,在DTC的场景下很难达成此条件。

1.1 DTC的特殊性

电商业发展到现在,大家几乎都能感受到,每一天似乎都在做活动,每一天好像都可以领优惠券,我们从数据上来看不难发现以下特点:

  1. 促销活动频繁。像我们本次合作的客户,光自家的促销平均一个月就促销4次,每次持续3~4天,还不算平台合作类的聚划算、百亿补贴;

促销刺激显著。不论促销多频繁,促销力度如何,相比于非促销日,销量都有一定增长;特殊日期的促销相比平常促销又有显著增长,如38、88、99大促、七夕、年货节等等;而待促销结束后,销量基本就立刻回到了日销水平;

  1. 促销存在相似性。不论是周期性的频繁促销,还是特殊节日的促销,从总量、促销期间每日销量占比、不同商品的销量占比等方面都存在相似性,同一个模型的准确率、误差分布表现,也存在一定相似性;

  1. 个别促销存在计划性。像双十一、618,或某些头部主播的直播活动,都有强烈的计划导向。品牌方都会与合作方提前有明确的销售计划,这时整个供应链往往以约定的计划值为导向,而非通过历史销量预测的方式;

因为上述的特性,我们本次合作暂不将618和双十一的大促考虑在内。而对于剩下的时段,很自然不会有大一统的预测模型,能使得每天的预测误差服从同一个分布,供安全库存理论来补货。那我们要怎么办呢?

1.2 基于联合误差分布的安全库存计算

基于DTC的特性,我们至少可以对促销和非促销分开建模,当我们的模型选择恰当时,可以保证在单个模型预测的误差中服从正态分布。那么这时候每一天的预测可以通过不同模型拼接起来,每个模型回测历史时也可以得到预测误差,那按照上文安全库存理论的基本思想,只要得到在Lead Time期间各模型误差的联合分布,找到对应Service Level下的安全库存,问题就可以迎刃而解!

需要注意的是,当Lead Time覆盖的促销和非促销天数不同,对应的联合误差分布也不同,例如两天促销一天非促销和一天促销和两天非促销,在相同的Service Level下的安全库存是不一样的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值