近日,2025 年亚布力中国企业家论坛第十一届创新年会在杭州举行。观远数据创始人兼CEO苏春园受邀出席内部研讨会并发表演讲,围绕 “AI 发展:现状、挑战与未来” 主题,分享了大模型推动下,观远数据在智能数据分析方向(Agentic BI)的最新实践与思考。
苏春园在演讲中表示,Agentic BI 核心在于解决当前数据应用的现实鸿沟,通过覆盖90%业务用户,打通数据-洞察-行动的闭环,助力企业实现敏捷经营。苏春园还以零售消费等领域的落地案例,分享了Agentic BI 从问数、问知到行动三个能力层次的价值,并进一步探讨了大模型技术应用的挑战与应对方案,行业变革路径与未来前景。
一、大模型推进数据分析进入3.0时代,Agentic BI带来更广泛的用户与更深度的分析
企业经营已从高速增长期的强执行转向新周期的敏捷经营,强调战略与行动的持续反馈迭代。因此,企业数字化投入中,BI 系统与数据分析能力建设持续为最高优先级,企业希望通过数字化让一线业务人员快速获取数据洞察、迅速行动以实现敏捷增长。但现实存在巨大鸿沟:仅 1%-10% 的人能真正用好数据,90% 的业务团队依赖 IT 与分析师,常因时效、供给不足错失敏捷决策机会。
但随着大模型的出现,数据分析能力的广泛覆盖成为可能。苏春园指出,在大模型的推动下,数据分析正从1.0时代的报表式BI、2.0时代的自助式BI,迈向3.0时代——Agentic BI(智能数据分析),这一变革体重点现在两大维度:
• 用户覆盖广度:BI用户覆盖范围将扩大10倍,从组织中不足10%的IT人员与分析师,扩展至90%的业务用户,让所有业务人员能具备“分析师”的能力,带着业务问题,直接从数据中找到答案。
• 分析深度升级:从关注 “发生了什么”(what),深入到探究 “为什么发生”(why)及 “如何行动”(how),即诊断问题根源、识别行动机会。
随着Agentic BI 时代的到来,未来 10 年,更广泛的用户覆盖与更深度的分析相结合,将为企业和社会创造巨大价值。从演进节奏上,企业真实的落地实践是一个长期、持续演进的过程,不同的业务决策场景,会配套1.0+2.0+3.0中,不同能力的组合;从建设路径上,作为参考,先有宽度(go-wide),再有深度(go-deep)。企业根据应用阶段而异,对行业大多数企业而言,可优先拓展广度,让更多人在日常工作场景中,能随时随地唤起数据,让业务团队先用起来;然后,在活跃用起来的场景中,逐步解锁高阶分析的能力,从数据穿透到洞察,从洞察驱动行动,不断让决策更加智能。
二、从问数、问知到行动的Agentic BI实践,AI会越来越像一位靠谱同事
作为业内领先的一站式智能分析平台与服务提供商,观远数据引领行业步伐,持续与行业领先企业,共同探索与落地Agentic BI的最佳实践。苏春园在研讨会上分享了观远数据 Agentic BI 的三个能力层次:
• L1 问数:用户可以基于原始数据表、数据资产(数据集、卡片、自助取数等)进行智能问答,系统返回查询结果并进行可视化渲染。
• L2 问知:用户提出问题,系统根据知识库中的问题分析思路,结合大模型推理能力,生成关键洞察,或报告式的数据分析总结。
• L3 智能体:大模型与内部知识不断融合,主动感知业务上下文,输出行动建议,对未来的业务表现进行预测分析;并通过与业务系统,深度融合,集成自动化工作流等。
以某1000+门店的知名零售品牌的落地实践为例,观远数据通过ChatBI等产品,协助客户的每家店,每一天,有机会实现10+次经营的改善,产生显著的业务价值:
• 基于L1的“巡店场景”,过去 BI 系统因操作门槛高导致督导使用率低,而 L1 的对话式能力让督导通过语音实时追问数据,即时调整策略,使每家店每天多实现 10 次有效业务改善;
• 基于L2的“门店诊断”,区域负责人可以实现空中巡店 ,AI助力决策者自动识别需重点关注的门店,对比标杆门店,给出行动建议,解决了依赖专业分析师的痛点;
• 基于L3的未来探索,未来的经营将实现门店的“自主优化”,通过数据 agent ,主动感知每个门店的内外部经营环境,并基于单店经营目标,自动完成补货等行动闭环。
三、Agentic BI技术落地的长期主义以及大模型“幻觉”问题的应对之道
尽管AI技术正以惊人态势从实验室走向规模化应用,但其在技术创新、社会伦理、应用落地等层面上依旧面对着一些挑战。苏春园在研讨会上分享了观远数据在Agentic BI领域观察到的一些挑战与应对策略。
其一,软件智能化落地的现实挑战与长期逻辑,容易高估一年,低估十年。苏春园表示,当前软件智能化热度从峰值下降,尽管年初因 DeepSeek 推出和 agent 概念火爆引发 “FOMO错失恐惧”,但短期内真正落地并形成显著商业价值闭环的案例极少。企业级软件,如数据分析平台,对准确度与可信度要求极高,技术落地需长期打磨软件算法、积累知识数据,且需与企业组织惯性、业务流程、数据基础等 “冰山之下” 的要素融合进化。因此,企业从数字化到智能化是循序渐进的长期过程,需避免高估短期效果、低估长期价值。
其二,大模型“幻觉”问题的应对关键是可信与智能的平衡,并把主动权给到客户。苏春园指出,大模型存在 “概率性输出” 的天然 “幻觉”,与企业决策场景对 100% 可信度的需求存在矛盾。应对思路是构建 “人机协同” 模式:通过产品设计为用户提供 “档位选择”,在需 100% 可信场景启用高可信档位,在需智能推演场景选择高智能档位,且给与用户选择权,不断提升两者融合的上限。
四、结语
随着大模型技术的持续迭代与企业数字化转型的深入推进,Agentic BI(智能体化分析)必将成为驱动企业决策智能化的核心引擎。从 “少数人用数据” 到 “人人用数据”,从 “被动看数” 到 “主动行动”,这一变革不仅是技术的跃迁,更是企业经营范式的重构。
观远数据将贯彻“让业务用起来 让决策更智能”的使命,持续打磨技术、沉淀实践,与千行百业的更多伙伴携手共创,基于“场景优先、业务价值优先”的原则,共同制定3个月、6个月、12个月的落地规划,打造 Agentic BI 最佳落地实践,让技术创新真正转化为企业的增长动能,实现 “数据驱动增长” 从愿景到现实的跨越。