DFS和BFS算法

一、深度优先遍历
       深度优先搜索,是图论中的经典算法。其利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。

递归定义
       假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:
    1.访问出发点v,并将其标记为已访问过;
    2.依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。
    3.若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

  
        图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

实现
深度优先搜索一般借助递归实现。
#include<iostream>  
using namespace std;
#define N  6
int a[N][N];
bool visited[N];

int Adj(int x);
void dfs(int v);

void store_graph()  //邻接矩阵存储图  
{
	int i, j;
	for (i = 1; i <= N; i++)
		for (j = 1; j <= N; j++)
			cin >> a[i][j];
}

void dfs_graph()    //深度遍历图  
{
	memset(visited, false, sizeof(visited));
	for (int i = 1; i <= N; i++)  //遍历每个顶点是为了防止图不连通时无法访问每个顶点  
		if (visited[i] == false)
			dfs(i);
}

void dfs(int v)  //深度遍历顶点  
{
	cout << v << " ";  //访问顶点v  
	visited[v] = true;
	int adj = Adj(v);  //求出v的相邻点
	while (adj != 0)
	{
		if (visited[adj] == false)
			dfs(adj);      //递归调用是实现深度遍历的关键所在  
		adj = Adj(v);
	}
}

int Adj(int x)   //求邻接点  
{
	for (int i = 1; i <= N; i++)
		if (a[x][i] == 1 && visited[i] == false)
			return i;
	return 0;
}

int main()
{
	cout << "初始化图:" << endl;
	store_graph();
	cout << "dfs遍历结果:" << endl;
	dfs_graph();
	system("pause");
	return 0;
}

二、广度优先遍历
       广度优先遍历是连通图的一种遍历策略。因为它的思想是从一个顶点V开始,优先遍历其周围较广的区域。很像对树的层次遍历。
    1、从图中某个顶点V出发,并访问此顶点;
    2、从V出发,访问V的各个未曾访问的邻接点W1,W2,…,Wk;然后,依次从W1,W2,…,Wk出发访问各自未被访问的邻接点;
    3、重复步骤2,直到全部顶点都被访问为止。

实现
广度优先搜索一般借助一个队列实现。
#include<iostream> 
#include<queue>
using namespace std;
#define N  6
int a[N][N];
bool visited[N];

void bfs(int v);
int Adj(int x);

void store_graph()
{
	for (int i = 1; i <= N; i++)
		for (int j = 1; j <= N; j++)
			cin >> a[i][j];
}

void bfs_graph()
{
	int i;
	memset(visited, false, sizeof(visited));


	for (i = 1; i <= N; i++)
		if (visited[i] == false)
			bfs(i);
}

void bfs(int v)
{	
	queue<int> q;
	int adj, temp;

	cout << v << " ";
	visited[v] = true;
	q.push(v);

	while (!q.empty())    //队列非空表示还有顶点未遍历到  
	{
		temp = q.front();  //获得队列头元素  
		q.pop();         //头元素出队 
		adj = Adj(temp);
		while (adj != 0)
		{
			if (visited[adj] == false)
			{
				cout << adj << " ";
				visited[adj] = true;
				q.push(adj);   //进队  
			}
			adj = Adj(temp);
		}
	}
}

int Adj(int x)
{
	for (int i = 1; i <= N; i++)
		if (a[x][i] == 1 && visited[i] == false)
			return i;
	return 0;
}

int main()
{
	cout << "初始化图:" << endl;
	store_graph();
	cout << "bfs遍历结果:" << endl;
	bfs_graph();
	system("pause");
	return 0;
}


<think>好的,我现在需要回答用户关于DFSBFS算法区别与实现的问题。首先,我得回忆这两个算法的基本概念,确保自己理解正确。DFS是深度优先搜索,也就是尽可能深地遍历树的节点,直到到达叶子节点再回溯。而BFS是广度优先搜索,逐层扩展,先访问离起点近的节点。这是它们的核心区别。 接下来,我需要明确它们的区别,可能包括遍历顺序、数据结构、空间复杂度等方面。比如,DFS通常用栈或递归实现,而BFS用队列。空间复杂度方面,BFS在最坏情况下可能比DFS高,尤其是当树比较宽的时候。 然后,实现部分,用户可能需要代码示例。DFS可以用递归或者显式的栈来实现,而BFS一般用队列。我需要写出这两种算法的Python代码,确保语法正确,并且加上注释说明。 还要注意用户提到的系统级指令,比如数学表达式要用$...$格式,独立公式用$$...$$,不过这个问题可能数学公式不多,但如果有涉及树或图的节点数、层数等,可能需要用到。例如,树的高度h,BFS的时间复杂度是$O(n)$,而DFS可能是$O(h)$,但得根据具体情况判断。 另外,用户要求生成相关问题,我需要想几个相关的问题,比如比较它们的优缺点,应用场景,或者如何选择两者等。这些问题应该能帮助用户进一步学习。 现在,检查是否有引用需要添加。用户提供的引用[1][2]提到了DFSBFS的原理结构,所以在回答中可以引用这些内容,特别是在提到它们的遍历方式时,比如引用[^2]说明它们搜索的结构像树,DFS深入,BFS逐层扩展。 最后,确保回答结构清晰,分点说明区别,代码部分用正确的格式,语言用中文,没有使用任何markdown,符合用户的要求。可能需要多次检查LaTeX语法是否正确,比如变量是否用$包围,是否有拼写错误等。 总结步骤: 1. 介绍DFSBFS的基本概念,引用提供的资料。 2. 分点列出它们的区别,包括遍历顺序、数据结构、空间复杂度、应用场景等。 3. 提供实现代码,Python的递归DFS、栈实现的DFS,队列实现的BFS。 4. 生成相关问题,如优缺点比较、应用例子、如何选择等。 5. 确保所有引用正确添加,比如在提到遍历结构时引用。</think>### DFS BFS 算法的区别与实现 #### 一、基本概念 1. **DFS(深度优先搜索)**:从起点出发,尽可能深地遍历分支,直到无法继续再回溯到上一个节点,尝试其他分支。搜索结构像一棵树,优先探索“深度”。 2. **BFS(广度优先搜索)**:从起点出发,逐层扩展,先访问离起点最近的节点。搜索时按“层级”逐步推进。 #### 二、核心区别 | 特性 | DFS | BFS | |--------------|------------------------------|------------------------------| | **遍历顺序** | 深度优先(纵向) | 广度优先(横向) | | **数据结构** | 栈(递归或显式栈) | 队列 | | **空间复杂度** | $O(h)$(h为树的高度) | $O(w)$(w为树的最大宽度) | | **应用场景** | 解决连通性、路径存在性问题 | 最短路径、层级遍历 | #### 三、实现代码 ##### 1. DFS 实现(递归) ```python def dfs_recursive(graph, node, visited): if node not in visited: print(node) # 处理当前节点 visited.add(node) for neighbor in graph[node]: dfs_recursive(graph, neighbor, visited) # 示例图的邻接表 graph = { 'A': ['B', 'C'], 'B': ['D', 'E'], 'C': ['F'], 'D': [], 'E': ['F'], 'F': [] } visited = set() dfs_recursive(graph, 'A', visited) # 从节点A开始 ``` ##### 2. DFS 实现(显式栈) ```python def dfs_stack(graph, start): stack = [start] visited = set() while stack: node = stack.pop() if node not in visited: print(node) # 处理当前节点 visited.add(node) # 按逆序压栈以保证与递归顺序一致 for neighbor in reversed(graph[node]): stack.append(neighbor) ``` ##### 3. BFS 实现(队列) ```python from collections import deque def bfs_queue(graph, start): queue = deque([start]) visited = set() while queue: node = queue.popleft() if node not in visited: print(node) # 处理当前节点 visited.add(node) for neighbor in graph[node]: queue.append(neighbor) ``` #### 四、应用场景对比 - **DFS适用场景**: - 拓扑排序(如任务依赖解析) - 检测图中的环 - 解决迷宫问题(只需判断是否存在路径) - **BFS适用场景**: - 社交网络中的“最短关系链” - 无权图的最短路径(如迷宫最短路径) - 网页爬虫按层级抓取 #### 五、性能分析 - **DFS空间优势**:递归深度与树高相关,适合纵深大的结构。 - **BFS时间优势**:若解靠近起点,BFS能更快找到最短路径,但可能占用更多内存[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值