分治算法

分治

:递归解决较小的问题

:然后从子问题的解构建原问题的解

分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
分治算法的经典例子:归并排序、快速排序


分治法适用的情况
分治法所能解决的问题一般具有以下几个特征:
    1) 该问题的规模缩小到一定的程度就可以容易地解决
    2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
    3) 利用该问题分解出的子问题的解可以合并为该问题的解;
    4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。


       第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
       第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、
       第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
       第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。


分治法的基本步骤

分治法在每一层递归上都有三个步骤:
step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
step3 合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
    Divide-and-Conquer(P)
    1. if |P| ≤ n0
    2. then return(ADHOC(P))
    3. 将P分解为较小的子问题 P1 ,P2 ,…,Pk
    4. for i ← 1 to k
    5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
    6. T ← MERGE(y1,y2,…,yk) △ 合并子问题
    7. return(T)

       其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解。


分治法的复杂性分析
        一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:
T(n)= k T(n/m)+f(n)
通过迭代法求得方程的解:
       递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。


可使用分治法求解的一些经典问题

(1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)归并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔

依据分治法设计程序时的思维过程
实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。
    1、一定是先找到最小问题规模时的求解方法
    2、然后考虑随着问题规模增大时的求解方法
    3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。


典型示例
1、求x的n次幂问题
int power(int x, int n)
{
	if (n == 0)
		return 1;
	if (n == 1)
		return x;
	if (n % 2 == 0)
		return power(x*x, n / 2);
	else
		return power(x*x, n / 2)*x;
}
2、二分查找(binary search)
int bin_search(int a[], int n, int x)
{
	int low, high, mid;
	low = 0;
	high = n - 1;
	while (low <= high)
	{
		mid = (low + high) / 2;
		if (x < a[mid])
			high = mid - 1;
		else if (x > a[mid])
			low = mid + 1;
		else
			return mid;
	}
	return -1;
}
3、最大子序列问题
int MaxSubSeqSum(const int *A, int left, int right)
{
	int MaxLeftSum, MaxRightSum, MaxSum;
	int MaxLeftBorderSum, MaxRightBorderSum;
	int LeftBorderSum, RightBorderSum;
	int center;
	int i;
	if (left == right)
	{
		if (A[left] > 0)
			return A[left];
		else
			return 0;
	}
	center = (left + right) / 2;
	MaxLeftSum = MaxSubSeqSum2(A, left, center);
	MaxRightSum = MaxSubSeqSum2(A, center + 1, right);
	MaxLeftBorderSum = 0;
	LeftBorderSum = 0;
	for (i = center; i >= left; i--)
	{
		LeftBorderSum += A[i];
		if (LeftBorderSum > MaxLeftBorderSum)
			MaxLeftBorderSum = LeftBorderSum;
	}
	MaxRightBorderSum = 0;
	RightBorderSum = 0;
	for (i = center + 1; i <= right; i++)
	{
		RightBorderSum += A[i];
		if (RightBorderSum > MaxRightBorderSum)
			MaxRightBorderSum = RightBorderSum;
	}
	MaxSum = Max_3(MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum);
	return MaxSum;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值