分治法(Divide-and-Conquer Algorithm)经典例子分析

本文详细介绍了分治法在快速排序、大整数乘法、矩阵乘法、棋盘覆盖问题及线性时间选择问题等计算问题中的应用。通过递归和分解,将复杂问题简化为子问题,进而提高算法效率。例如,快速排序通过选取枢轴进行划分,大整数乘法利用Strassen算法降低时间复杂度,棋盘覆盖问题则通过分治策略确保解决方案的存在。这些例子展示了分治法在解决计算难题时的有效性和创新性。
摘要由CSDN通过智能技术生成
转载自:分治法(Divide-and-Conquer Algorithm)经典例子分析

1、快速排序

基本思想

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

思路分析

总体思路: 分而治之。
具体操作:选中一个元素为枢轴,以这个枢轴为参照,和每个元素相比较,通过交换位置,将比该枢轴的元素放在数组尾部,比该枢轴的元素放在数组头部。当以这个枢轴重新排序出来之后,数组分为三个部分,小于枢轴数组枢轴大于枢轴数据,这时,分而治之,小于枢轴数组,大于枢轴数组分别再递归调用,即可完成排序。

伪代码如下:

QuickSort(A,p,r)
   if p<r
        q = Partition(A,p,r)    //确定划分位置
        QuickSort(A,p,q-1)     //子数组A[p...q-1]
        QuickSort(Q,q+1,r)     //子数组A[q+1...r]
        快速排序关键过程是对数组进行划分,划分过程需要选择一个枢轴(pivot element)作为参照,围绕着这个枢轴进划分子数组
        Partition(A,p,r) //p、r为数组下标
        x = A[r]   //将最后一个元素作为主元素
        i = p-1 // i指向的是比主元素小的位置,
        for  j = p  to  r-1     //从第一个元素开始到倒数第二个元素结束,比较确定主元素的位置
        do  if  A[j] <= x
                   then  i = i+1 //如果比主元素小,则把i=i+1的位置上的元素和j位置发现小元素互换
                            exchange A[i] <-> A[j]
        exchange A[i+1]<->A[r]   //最终确定主元的位置
        return i+1   //返回主元的位置
code time
/*参考数据结构p274(清华大学出版社,严蔚敏)*/
#include <iostream>

using namespace std;

void Qsort(int a[], int low, int high)
{
    if(low >= high)
    {
        return;
    }
    int first = low;
    int last = high;
    int key = a[first];/*用字表的第一个记录作为枢轴*/

    while(first < last)
    {
        while(first < last && a[last] >= key)
        {
            --last;
        }

        a[first] = a[last];/*将比第一个小的移到低端*/

        while(first < last && a[first] <= key)
        {
            ++first;
        }

        a[last] = a[first];    
/*将比第一个大的移到高端*/
    }
    a[first] = key;/*枢轴记录到位*/
    Qsort(a, low, first-1);
    Qsort(a, first+1, high);
}
int main()
{
    int a[] = {57, 68, 59, 52, 72, 28, 96, 33, 24};

    Qsort(a, 0, sizeof(a) / sizeof(a[0]) - 1);/*这里原文第三个参数要减1否则内存越界*/

    for(int i = 0; i < sizeof(a) / sizeof(a[0]); i++)
    {
        cout << a[i] << " ";
    }

    return 0;
}

大整数乘法

在计算机中,长整形(long int)变量的范围是-2147483648至2147483647,因此若用长整形变量做乘法运算,乘积最多不能超过10位数。即便用双精度(double)变量,也仅能保证16位有效数字的精度。所以需要用算法来解决大整数相乘的问题。

思路分析

问题的关键如下:
在这里插入图片描述
在这里插入图片描述
利用公式可将问题转化为递归的形式并加以解决。

code time
#include <iostream>
#include <cmath>
using namespace std;

int sign(int x)
{
    return x > 0 ? 1 : -1;
}

int divideConquer(int x, int y, int n)
{
    int s = sign(x) * sign(y);      // 正负号
    x = abs(x);
    y = abs(y);
    if(x == 0 || y == 0)
         return 0;
    else if(n == 1)
        return s * x * y;
    else
    {
        int A = (int) x / pow(10, (int)(n / 2));
        int B = x - A * pow(10, n / 2);
        int C = (int) y / pow(10, (int)(n / 2));
        int D = y - C * pow(10, n / 2);
        int AC = divideConquer(A, C, n / 2);
        int BD = divideConquer(B, D, n / 2);
        int ABDC = divideConquer((A - B), (D - C), n / 2) + AC + BD;
        return s * (AC * pow(10 , n) + ABDC * pow(10, (int)(n / 2)) + BD);  
    }
}

int main()
{
    int a = 1234, b = -9876;
    int result = divideConquer(a,b,4);
    cout<<a<<" * " <<b<<" = "<<result;
}
//1、添加了sign函数的实现
//2、因为当n为1时的计算考虑了正负性,所以x与y应该用abs计算,否则所有有关符号的东西都去掉也是可以的。
//3、这个程序只是表现了分治算法的思想,但是真正的大数还是不能计算(考虑到溢出)

3、Strassen矩阵算法

矩阵乘法是种极其耗时的运算。
以C = A • B为例,其中A和B都是 n x n 的矩阵。根据矩阵乘法的定义,计算过程如下:

//矩阵乘法,3个for循环搞定   
void Mul(int** matrixA, int** matrixB, int** matrixC)   
{   
    for(int i = 0; i < 2; ++i)    
    {   
        for(int j = 0; j < 2; ++j)    
        {   
            matrixC[i][j] = 0;   
            for(int k = 0; k < 2; ++k)    
            {   
                matrixC[i][j] += matrixA[i][k] * matrixB[k][j];   
            }   
        }   
    }   
} 

由于存在三层循环,它的时间复杂度将达到O(n3)
下面介绍Strassen算法,该算法将时间复杂度降低到O(nlg7) ≈ O(n2.81)

思路分析

Strassen算法是一种基于分治策略的改进算法,我们先来看下简单的分治算法。
在这里插入图片描述
经计算可以看到,分治策略改进的矩阵计算并不能降低时间复杂度。要想提高算法效率,由主定理方法可知必须想办法将2中递归式中的系数8减少。Strassen算法就是基于此进行了改进。

如图所示:
在这里插入图片描述
Strassen用了更多的步骤,成功的把计算量变成了7个矩阵乘法和18个矩阵加法。虽然矩阵加法增加了好几倍,而矩阵乘法只减小了1个,但在数量级面前,18个加法仍然渐进快于1个乘法。这就是该算法的精妙之处。

code time
#include <bits/stdc++.h>
using namespace std;

//矩阵相乘朴素法函数
void Mul(int** MatrixA, int** MatrixB, int** MatrixResult,int length)
{
    for (int i = 0; i < length; i++)
    {
        for (int j = 0; j < length; j++)
        {
            MatrixResult[i][j] = 0;
            for (int k = 0; k < length; k++)
            {
                MatrixResult[i][j] = MatrixResult[i][j] + MatrixA[i][k] * MatrixB[k][j];
            }
        }
    }
}

//矩阵相减函数
void Sub(int** MatrixA, int** MatrixB, int** MatrixResult,int length)
{
    for (int i = 0; i < length; i++)
    {
        for (int j = 0; j < length; j++)
        {
            MatrixResult[i][j] = MatrixA[i][j] - MatrixB[i][j];
        }
    }
}

//矩阵相加函数
void Add(int** MatrixA, int** MatrixB, int** MatrixResult, int length)
{
    for (int i = 0; i < length; i++)
    {
        for (int j = 0; j < length; j++)
        {
            MatrixResult[i][j] = MatrixA[i][j] + MatrixB[i][j];
        }
    }
}

//Strasssen法
void Strassen(int** matrixA, int** matrixB, int** matrixResult, int length)
{
    int halfLength = length / 2;
    int newlength = length / 2;

    //如果矩阵维度等于2,用一般法求解
    if (length == 2)
    {
        Mul(matrixA, matrixB, matrixResult, length);
    }
    else
    {

        int** a11 = new int*[newlength];
        int** a12 = new int*[newlength];
        int** a21 = new int*[newlength];
        int** a22 = new int*[newlength];

        int** b11 = new int*[newlength];
        int** b12 = new int*[newlength];
        int** b21 = new int*[newlength];
        int** b22 = new int*[newlength];

        int** s1 = new int*[newlength];
        int** s2 = new int*[newlength];
        int** s3 = new int*[newlength];
        int** s4 = new int*[newlength];
        int** s5 = new int*[newlength];
        int** s6 = new int*[newlength];
        int** s7 = new int*[newlength];

        int** matrixResult11 = new int*[newlength];
        int** matrixResult12 = new int*[newlength];
        int** matrixResult21 = new int*[newlength];
        int** matrixResult22 = new int*[newlength];

        int** temp = new int*[newlength];
        int** temp1 = new int*[newlength];
        int newsize = newlength;

        //矩阵分割
        for (int i = 0; i < newlength; i++)
        {
            a11[i] = new int[newsize];
            a12[i] = new int[newsize];
            a21[i] = new int[newsize];
            a22[i] = new int[newsize];

            b11[i] = new int[newsize];
            b12[i] = new int[newsize];
            b21[i] = new int[newsize];
            b22[i] = new int[newsize];

            s1[i] = new int[newsize];
            s2[i] = new int[newsize];
            s3[i] = new int[newsize];
            s4[i] = new int[newsize];
            s5[i] = new int[newsize];
            s6[i] = new int[newsize];
            s7[i] = new int[newsize];

            matrixResult11[i] = new int[newsize];
            matrixResult12[i] = new int[newsize];
            matrixResult21[i] = new int[newsize];
            matrixResult22[i] = new int[newsize];

            temp[i] = new int[newsize];
            temp1[i] = new int[newsize];
        }
        //计算分割矩阵a,b
        for (int i = 0; i < length / 2; i++)
        {
            for (int j = 0; j < length / 2; j++)
            {
                a11[i][j] = matrixA[i][j];
                a12[i][j] = matrixA[i][j + length / 2];
                a21[i][j] = matrixA[i + length / 2][j];
                a22[i][j] = matrixA[i + length / 2][j + length / 2];
                b11[i][j] = matrixB[i][j];
                b12[i][j] = matrixB[i][j + length / 2];
                b21[i][j] = matrixB[i + length / 2][j];
                b22[i][j] = matrixB[i + length / 2][j + length / 2];
            }
        }

        //计算s1
        Add(a11, a22, temp, halfLength);
        Add(b11, b22, temp1, halfLength);
        Strassen(temp, temp1, s1, halfLength);

        //计算s2
        Add(a21, a22, temp, halfLength);
        Strassen(temp, b11, s2, halfLength);

        //计算s3
        Sub(b12, b22, temp1, halfLength);
        Strassen(a11, temp1, s3, halfLength);

        //计算s4
        Sub(b21, b11, temp1, halfLength);
        Strassen(a22, temp1, s4, halfLength);

        //计算s5
        Add(a11, a12, temp, halfLength);
        Strassen(temp, b22, s5, halfLength);

        //计算s6
        Sub(a21, a11, temp, halfLength);
        Add(b11, b12, temp1, halfLength);
        Strassen(temp, temp1, s6, halfLength);

        //计算s7
        Sub(a12, a22, temp, halfLength);
        Add(b21, b22, temp1, halfLength);
        Strassen(temp, temp1, s7, halfLength);

        //计算matrixResult11
        Add(s1, s4, temp, halfLength);
        Sub(s7, s5, temp1, halfLength);
        Add(temp, temp1, matrixResult11, halfLength);

        //计算matrixResult12
        Add(s3, s5, matrixResult12, halfLength);

        //计算matrixResult21
        Add(s2, s4, matrixResult21, halfLength);

        //计算matrixResult22
        Add(s1, s3, temp, halfLength);
        Sub(s6, s2, temp1, halfLength);
        Add(temp, temp1, matrixResult22, halfLength);

        //计算结果矩阵
        for (int i = 0; i < length / 2; i++)
        {
            for (int j = 0; j < length / 2; j++)
            {
                matrixResult[i][j] = matrixResult11[i][j];
                matrixResult[i][j + length / 2] = matrixResult12[i][j];
                matrixResult[i + length / 2][j] = matrixResult21[i][j];
                matrixResult[i + length / 2][j + length / 2] = matrixResult22[i][j];
            }
            //释放内存
            delete(a11[i]);
            delete(a12[i]);
            delete(a21[i]);
            delete(a22[i]);

            delete(b11[i]);
            delete(b12[i]);
            delete(b21[i]);
            delete(b22[i]);

            delete(s1[i]);
            delete(s2[i]);
            delete(s3[i]);
            delete(s4[i]);
            delete(s5[i]);
            delete(s6[i]);
            delete(s7[i]);

            delete(matrixResult11[i]);
            delete(matrixResult12[i]);
            delete(matrixResult21[i]);
            delete(matrixResult22[i]);

            delete(temp[i]);
            delete(temp1[i]);
        }
        delete(a11);
        delete(a12);
        delete(a21);
        delete(a22);

        delete(b11);
        delete(b12);
        delete(b21);
        delete(b22);

        delete(s1);
        delete(s2);
        delete(s3);
        delete(s4);
        delete(s5);
        delete(s6);
        delete(s7);

        delete(matrixResult11);
        delete(matrixResult12);
        delete(matrixResult21);
        delete(matrixResult22);

        delete(temp);
        delete(temp1);
    }

}

//矩阵A,B初始化赋值函数
void FillMatrix(int** MatrixA, int** MatrixB, int** MatrixResult, int length)
{
    srand(time(0));
    for (int i = 0; i < length; i++)
    {
        for (int j = 0; j < length; j++)
        {
            MatrixA[i][j] = rand()%10;
            MatrixB[i][j] = rand()%10;
            MatrixResult[i][j] = 0;
        }
    }
}
    int main()
    {
        int length = 8;  //初始化矩阵维度
        int** MatrixA;    //存放矩阵A
        int** MatrixB;    //存放矩阵B
        int** MatrixResult;    //存放结果矩阵
        MatrixA =new int*[length];
        MatrixB =new int*[length];
        MatrixResult =new int*[length];
        for (int i = 0; i < length; i++)
        {
            MatrixA[i] =new int[length];
            MatrixB[i] =new int[length];
            MatrixResult[i] =new int[length];
        }

        //矩阵赋值
        FillMatrix(MatrixA, MatrixB, MatrixResult,length);  

        cout << "初始化A矩阵为:" << endl;
        for (int i = 0; i < length; i++)
        {
            for (int j = 0; j < length; j++)
                cout << MatrixA[i][j] << " ";
            cout << endl;
        }

        cout << "初始化B矩阵为:" << endl;
        for (int i = 0; i < length; i++)
        {
            for (int j = 0; j < length; j++)
                cout << MatrixB[i][j] << " ";
            cout << endl;
        }

        //利用Strassen法求矩阵A*B
        Strassen( MatrixA, MatrixB, MatrixResult, length);

        //输出矩阵A*B
        cout << "矩阵A*B=" << endl;
        for (int i = 0; i < length; i++)
        {
            for (int j = 0; j < length; j++)
                cout << MatrixResult[i][j] << " ";
            cout << endl;
        }
        return 0;
    }

4、棋盘覆盖问题

背景介绍

在一个 2 k ∗ 2 k 2^k * 2^k 2k2k 个方格组成的棋盘中,有一个方格与其它的不同,若使用以下四种L型骨牌覆盖除这个特殊方格的其它方格,如何覆盖。四个L型骨牌如下图:
在这里插入图片描述
特殊的方格位置如下:
在这里插入图片描述

思路分析

可以用数学归纳法证明一定有解。
下面来用分治的思想解决问题。
1.当k>0时,将 2 k 2^k 2k * 2 k 2^k 2k 棋盘 分隔称为4个 2 ( k − 1 ) ∗ 2 ( k − 1 ) 2^{(k-1)}*2^{(k-1)} 2(k1)2(k1) 子棋盘
2.特殊的方格肯定在这4个较小的棋盘中,其余3个子棋盘肯定没有特殊方格。用一个L方格覆盖这3个子棋盘的汇合处
3.这3个子棋盘被覆盖L形骨牌就成了3个有特殊方格的棋盘,然后递归求解,直至转化2*2棋盘。

code time
#include <iostream>       
using namespace std;   

int tile = 0;//骨牌编号  
int Board[4][4];//棋盘  
void ChessBoard(int tr,int tc,int dr,int dc,int size);  

int main()  
{  
    for(int i=0; i<4; i++)  
    {  
        for(int j=0; j<4; j++)  
        {  
            Board[i][j] = 0;  
        }  
    }  

    ChessBoard(0,0,1,2,4);  

    for(int i=0; i<4; i++)  
    {  
        for(int j=0; j<4; j++)  
        {  
            cout<<Board[i][j]<<" ";  
        }  
        cout<<endl;  
    }  
}  

/** 
 * tr : 棋盘左上角的行号,tc棋盘左上角的列号 
 * dr : 特殊方格左上角的行号,dc特殊方格左上角的列号 
 * size :size = 2^k 棋盘规格为2^k*2^k 
 */  
void ChessBoard(int tr,int tc,int dr,int dc,int size)  
{  
    if(size == 1)  
    {  
        return;  
    }  
    int t = tile++;//L型骨牌编号  
    int s = size/2;//分割棋盘  

    //覆盖左上角子棋盘  
    if(dr<tr+s && dc<tc+s)//特殊方格在此棋盘中  
    {  
        ChessBoard(tr,tc,dr,dc,s);  
    }  
    else//特殊方格不在此棋盘中  
    {  
        //用编号为t的骨牌覆盖右下角  
        Board[tr+s-1][tc+s-1] = t;  
        //覆盖其余方格  
        ChessBoard(tr,tc,tr+s-1,tc+s-1,s);  
    }  

    //覆盖右上角子棋盘  
    if(dr<tr+s && dc>=tc+s)//特殊方格在此棋盘中  
    {  
        ChessBoard(tr,tc+s,dr,dc,s);  
    }  
    else//特殊方格不在此棋盘中  
    {  
        //用编号为t的骨牌覆盖左下角  
        Board[tr+s-1][tc+s] = t;  
        //覆盖其余方格  
        ChessBoard(tr,tc+s,tr+s-1,tc+s,s);  
    }  

    //覆盖左下角子棋盘  
    if(dr>=tr+s && dc<tc+s)//特殊方格在此棋盘中  
    {  
        ChessBoard(tr+s,tc,dr,dc,s);  
    }  
    else//特殊方格不在此棋盘中  
    {  
        //用编号为t的骨牌覆盖右上角  
        Board[tr+s][tc+s-1] = t;  
        //覆盖其余方格  
        ChessBoard(tr+s,tc,tr+s,tc+s-1,s);  
    }  

    //覆盖右下角子棋盘  
    if(dr>=tr+s && dc>=tc+s)//特殊方格在此棋盘中  
    {  
        ChessBoard(tr+s,tc+s,dr,dc,s);  
    }  
    else//特殊方格不在此棋盘中  
    {  
        //用编号为t的骨牌覆盖左上角  
        Board[tr+s][tc+s] = t;  
        //覆盖其余方格  
        ChessBoard(tr+s,tc+s,tr+s,tc+s,s);  
    }  

}  

5、线性时间选择问题

从数组中选择第i小的数,并且要求问题的渐近时间复杂度为O(n)

思路分析

线性时间选择随机划分法可以模仿随机化快速排序算法设计。对输入数组进行递归划分,与快速排序不同的是,它只对划分出的子数组之一进行递归处理,用一个随机的序列中的数作为枢纽,用快速排序算法,进行一次快排,然后将枢纽值和k值进行比较,以此来确定k值。
性能:平均O(n) 最坏O(n^2)
伪代码如下:

RANDOMIZED-SELECT ( A, p, r, i )
if  p = r           // 临界问题处理
       then  return A[p]
q ← RANDOMIZED-PARTITION( A, p, r )   //进行划分,返回划分元下标
k ← q – p + 1
if  i = k
       then return A[q];
else if i < k
        then return RANDOMIZED-SELECT ( A, p, q - 1, i )
else 
         return RANDOMIZED-SELECT( A, q+1, r, i – k )
code time
#include <iostream>
#include <ctime>
#define N 10
using namespace std;

//交换两个变量的值
void exchange(int &a, int &b)
{
    int temp = a;
    a = b;
    b = temp;
}

// 求分割点的位置
int partition(int * array, int low, int high)
{
    int i = low - 1;
    //默认将划分段的最后一个元素为主元
    int x = array[high];

    for (int j = low; j < high; j++)
    {
        if (array[j] <= x)//在array[i]左边都是小于x即array[high]的数,右边均是大于它的数
        {
            i += 1;
            exchange(array[i], array[j]);
        }
    }
    exchange(array[i + 1], array[high]);
    return i + 1;       // 循环完毕后,i+1就是该数组的分割点
}

// 以low ~ high 之间的一个随机元素作为主元,返回分割点的位置
int RandomPartition(int *array, int low, int high)
{
    //找到low ~ high 之间的一个随机位置
    int i = rand() % (high - low + 1) + low;

    //交换该随机主元至尾部,
    exchange(array[i], array[high]);

    return partition(array, low, high);
}

// 从无序序列中选择第i个大小的元素
int RandomizedSelect(int *data, int l, int h, int i)
{
    //如果输入序列中仅有一个元素
    if (l == h)
        return data[l];

    //求分割点pos,该位置左边元素均小于data[pos] , 右边元素均大于data[pos]
    int pos = RandomPartition(data, l, h);

    //求该分割点是第几小元素
    int k = pos - l + 1;

    //如果就是当前第i小元素,则返回data[pos]
    if (k == i)
        return data[pos];
    else if (k < i)
        return RandomizedSelect(data, pos + 1, h, i - k);
    else
        return RandomizedSelect(data, l, pos - 1, i);
}

int main()
{
    //声明一个待排序数组   
    int array[N];
    //设置随机化种子,避免每次产生相同的随机数    
    srand((unsigned)time(NULL));
    for (int i = 0; i<N; i++)
        array[i] = rand() % 101;    //数组赋值使用随机函数产生1-100之间的随机数
    cout << "原序列:" << endl;
    for (int j = 0; j<N; j++)
        cout << array[j] << "  ";

    cout << endl << "从小到大排在第5位的是: " ;
    cout << RandomizedSelect(array, 0, N - 1 , 5);
    cout << endl;

    return 0;
}

最接近点对问题

给定直线上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小

思路分析

最基本的思路我们只要将每一点与其他n-1个点的距离算出,找出达到最小距离的两个点即可。然而,这样做效率太低,需要O(n^2)的计算时间。
下面分析分治法:
在这里插入图片描述
考虑将所给的n个点的集合S分成2个子集S1和S2,每个子集中约有n/2个点,然后在每个子集中递归地求其最接近的点对。

如何实现分治法中的合并步骤,即由S1和S2的最接近点对,如何求得原集合S中的最接近点对,因为S1和S2的最接近点对未必就是S的最接近点对,类似之前的最大子序列问题。

通过观察发现,当合并时,最小的一定是前一个序列的最大和后一个序列的最小点。
可用分治法解决。

code time
//参考自https://blog.csdn.net/liufeng_king/article/details/8484284
#include<bits/stddc++.h>
using namespace std;
const int maxn=100005;
struct Point{
  double x;
}p[maxn];

int a[maxn];
int cmpx(Point a,Point b){
  return a.x<b.x;
}
inline double dis(Point a,Point b){
   if(a.x>b.x) return a.x-b.x;
   else return b.x-a.x;
}

double closest(int low,int high){
  if(low+1==high)  //只有两个点
    return dis(p[low],p[high]);
  if(low+2==high)  //只有三个点
    return min(dis(p[low],p[high]),min(dis(p[low],p[low+1]),dis(p[low+1],p[high])));
  int mid=(low+high)/2; //求中点即左右子集的分界线
  double d=min(closest(low,mid),closest(mid+1,high));
  d=min(d,dis(p[mid],p[mid+1])); //最后一步,合并
  return d;
}
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF){
        for(int i=0;i<n;i++)
            scanf("%lf",&p[i].x);
        sort(p,p+n,cmpx);
        printf("%.2lf\n",closest(0 , n-1));//最近点对间的距离
    }
    return 0;

循环赛日程表问题

背景介绍

设有n(n= 2 k 2^k 2k)支队伍參加循环赛,循环赛共进行n-1天,每支队伍要与其它n-1支队伍比赛一场,且每支队伍每天必须比赛一场,不能轮空。试按此要求为比赛安排日程。

思路分析

基本思路是按分治策略,我将所有的选手分为两半,则n个选手的比赛日程表可以通过n/2个选手的比赛日程表来决定。递归地用这种一分为二的策略对选手进行划分,直到只剩下两个选手

我们先安排**奇数下标位置偶数下标位置**之间的比赛,全部奇数号组成一个序列[1,3…n-1],以奇数组[1,3,5,7]为例,接下来,再将队伍一分为二,得到[15],[37],此时已不可再分出子队伍,计算结束。

code time

// team: 比赛安排结构,team[2k] vs team[2k+1] 
// len: team的总数 
// id: 第id轮的安排,id的范围[1, len-1] 
#include<iostream>
using namespace std;
const int len = 8;

void game(int *team, int len, int id)
{
    int base = 2;
    while (id > len/base)
    {
        id = id - len/base;
        base = base * 2;
    }
    for (int i = 0; i < base/2; i++)
    {
        int start = i + base/2 + (id-1) * base;
        for (int j=0; j<len/base; j++)
        {
            team[i*2*len/base+2*j] = base*j+i;
            team[i*2*len/base+2*j+1] = (start+base*j)%len;
        }
    }
}

void dump(int *arr, int len)
{
    for (int i=0; i<len; i+=2)
        cout<< arr[i] <<" VS "<<arr[i+1]<<" ";
    cout<<endl;
}

int main()
{
    int team[len];
    for (int i=1; i<len; i++)
    {
        game(team, len, i);
        cout<<"DAY "<<i<<" ";
        dump(team, len);
    }
    return 0;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值